PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

Macquarie University – Biological Science Building 205a Culloden Road Macquarie Park NSW 2109

Macquarie University – October 2016

DOCUMENT CONTROL

PHASE II ENVIRONMENTAL

SITE ASSESSMENT REPORT

Macquarie University – Biological Science Building 205a Culloden Road Macquarie Park NSW 2109

PREPARED FOR

Macquarie University C/O Ru Nyamambi Donald Cant Watts Corke Level 1, 14 Martin Place, Sydney, NSW 2000

Report reference: 1601086Rpt02FinalV01_12Oct16

Date: 13 October 2016

DISTRIBUTION AND REVISION REGISTER

Revision Number	Date	Description	Recipient	Deliverables	
V00	12/10/2016	Internal Draft Report 1601086_Rpt02DraftV00_12Oct16	Geo-Logix Pty Ltd	1 Electronic Copy	
V01	13/10/2016	Final Report 1601086Rpt02FinalV01_12Oct16	Donald Cant Watts Corke	1 Electronic Copy	

 Issued by:
 Geo-Logix Pty Ltd

 ABN:
 86 116 892 936

EdlFLy

Edward Lilly BS Civil Engineering, MIEAust Senior Geotechnical Engineer

Reviewed by Ben Pearce BSc (Hons), CEnvP#321 Senior Associate

EXECUTIVE SUMMARY

Geo-Logix Pty Ltd (Geo-Logix) was commissioned by Donald Cant Watts Corke (DCWC) on behalf of Macquarie University to conduct a Phase II Environmental Site Assessment (ESA) of the portion of the university grounds earmarked for construction of administration and research buildings for the Biological Sciences department, in the vicinity of 205a Culloden Road, Macquarie Park NSW.

The objective of the Phase II ESA was to conduct an investigation to assess the presence or otherwise of contamination to the land associated with the above identified historical activities. Further, the assessment was to consider the suitability of the site for proposed use as the Macquarie University – Biological Science Building.

The site is located within the north western corner of the Macquarie University grounds, on the southern side of Culloden Road, within the Sydney suburb of Macquarie Park NSW. The site is the footprint of two proposed buildings, an L-shaped administration building and rectangular research building encompassing an area of approximately 7,500 m². At the time of Geo-Logix investigation, the site was predominated by grass lawn with sparsely treed areas in the northern and southern portions of site. Some fill including construction debris (bricks, concrete, etc.) was apparent in the treed areas.

Geo-Logix completed a Phase I ESA for the subject site in September 2016. The Phase I ESA comprised a review of historical information pertaining to the proposed development area and a site inspection and identified the following potential sources of contamination:

- Orchards/Market Gardening from the late 1890s to the mid-1950s;
- Poultry farming which may have occurred on site between 1930 and 1946;
- Potential hazardous building materials in shallow soil from demolition of former structures; and
- Fill of unknown origin containing demolition debris identified during Geo-Logix's site inspection.

Given the site history it was concluded there was a potential for contamination of shallow soils across the site. Contaminants of potential concern (COPC) included Petroleum Hydrocarbons (TRH, BTEXN), Polyaromatic Hydrocarbons (PAH), Organochlorine Pesticides (OCPs), Polychlorinated Biphenyls (PCBs), heavy metals (As, Cd, Cr, Cu, Hg, Pb, Ni and Zn), and asbestos.

To confirm the site is suitable for the proposed development, the assessment decision states:

• "Contamination has not been identified in soil at concentrations above the adopted assessment criteria. Therefore, the site is considered suitable for the proposed use as a biological sciences building."

To accept the assessment decision, the results of the systematic soil sampling assessment must meet the following decision rules:

- The 95% Upper Confidence Limit of COPC concentration data does not exceed the soil assessment criteria;
- No single sample exceeds 250% of the soil COPC assessment criteria;
- The standard deviation of COPC analytical results is less than 50% of the soil assessment criteria; and

• Asbestos was not visually observed on the site surface or in the subsurface at soil sampling locations.

The results of targeted/judgmental soil sampling assessments must comply with the following decision rules:

• No single sample exceeds the soil COPC assessment criteria.

To assess for contamination Geo-Logix completed systematic sampling of shallow soils across the site from 19 locations (TP1–TP19) on a 20 m sampling grid. A 20 m grid is sufficient to identify circular contamination hotspots equal to or greater than 23.6 m diameter at 95% statistical degree of certainty. The sampling density meets minimum sampling standards for the site area (7,500 m²) as per NSW EPA (1995).

Based on the site history and field observations the onsite fill appears to comprise tilled earth resulting from past market gardening activities. The following sampling and analysis program was completed to target contamination of fill arising from market gardening, poultry farming, hazardous building materials from previously demolished buildings and, conservatively, fill of unknown origin:

- Analysis of a 10 L bulk shallow soil sample from each grid location for bonded asbestos by visual assessment in accordance with the gravimetric method described in the WA DOH Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (WA DOH, 2009);
- Analysis of three 500 mL shallow soil samples from selected locations for laboratory identification of asbestos fines and/or fibres by Polarised Light Microscopy (PLM) and Dispersion Staining (DS) in accordance with WA DOH (2009);
- Collection of a fill sample from the top 0.2 m of soil in each grid location;
- Analysis of each shallow soil sample collected in fill for TRH, BTEXN, PAH, OCPs, PCBs, and heavy metals,

The following sampling and analysis program was completed to target contamination of natural soil arising from historical market gardening and poultry farming, and from hazardous building materials from previously demolished buildings:

- Analysis of a 10 L bulk shallow soil sample from each grid location for bonded asbestos by visual assessment in accordance with the gravimetric method described in WA DOH (2009);
- Collection of a soil sample from the top 0.2 m of natural soil in each grid sampling location;
- Where no fill was present this sample was submitted for laboratory analysis of OCPs and heavy metals; and
- Two natural soil samples, collected from the top 0.2 m of natural soil underlying fill, were selected from broadly spaced locations and submitted for analysis of OCPs and heavy metals.

Following receipt of analytical results, Geo-Logix completed additional sampling and analysis to delineate the extent of PAH contamination identified in fill at test pit TP11:

- Analysis of the soil sample collected from the natural soil underlying fill in test pit TP11 for PAH;
- Excavation of four test pits (TP11/N, TP11/E, TP11/S and TP11/W) using a shovel. Test pits were located 1 m horizontal distance from test pit TP11 in each of the four cardinal directions;

- Collection of fill and natural soil samples from each test pit; and
- Analysis of the four fill samples collected for PAH.

PAH were detected at elevated concentrations in fill at sample location TP11. The results of delineation sampling completed in the near vicinity indicate the PAH detection was a one-off isolated occurrence. The PAH in fill is not considered significant and does not warrant remediation.

No other COPC were detected at concentrations greater than assessment criteria. Geo-Logix considers the site suitable for the proposed Macquarie University – Biological Science Building.

TABLE OF CONTENTS

1. INTRODUCTION1
2. SITE INFORMATION
2.1 Site Identification1
2.2 Site Zoning and Land Use1
2.3 Site Description1
2.4 Surrounding Land Use2
2.5 Topography2
2.6 Surface Water Receptor2
2.7 Geology2
2.8 Hydrogeology2
2.9 Underground Utilities2
3. PREVIOUS ENVIRONMENTAL INVESTIGATIONS
3.1 Geo-Logix (2016) Phase I Environmental Site Assessment
4. POTENTIAL SITE CONTAMINATION
5. DATA QUALITY OBJECTIVES
6. ASSESSMENT CRITERIA
7. INVESTIGATION METHODOLOGIES
7.1 Sampling Analysis Plan8
7.2 Soil Sampling Methodology9
7.3 Delineation Sampling Methodology9
7.4 Quality Assurance9
8. INVESTIGATION RESULTS
8.1 Site Geology10
8.2 Soil Analytical Results10
8.3 Delineation Sample Analytical Results11
8.4 QA/QC Results11
9. DISCUSSION AND CONCLUSION
10. LIMITATIONS
11. REFERENCES

FIGURES

Figure 1: Site Location Map Figure 2: Site Map

TABLES

Table 1: Summary of Soil Analytical Data – Petroleum Hydrocarbons
Table 2: Summary of Soil Analytical Data – Polyaromatic Hydrocarbons
Table 3: Summary of Soil Analytical Data – Organochlorine Pesticides
Table 4: Summary of Soil Analytical Data – Polychlorinated Biphenyls
Table 5: Summary of Soil Analytical Data – Heavy Metals
Table 6: Summary of Soil Analytical Data – Asbestos

ATTACHMENTS

Attachment A: Photographic Log Attachment B: All Groundwater Map Attachment C: Underground Utility Plans Attachment D: Test Pit Logs Attachment E: Laboratory Reports

1. INTRODUCTION

Geo-Logix Pty Ltd (Geo-Logix) was commissioned by Donald Cant Watts Corke (DCWC) on behalf of Macquarie University to conduct a Phase II Environmental Site Assessment (ESA) of the portion of the university grounds earmarked for construction of administration and research buildings for the Biological Sciences department. The investigation area is located in the vicinity of 205 Culloden Road, Macquarie Park NSW (Figure 1).

The objective of the Phase II ESA was to conduct an investigation to assess the presence or otherwise of contamination to the land associated with the above identified historical activities. Further, the assessment was to consider the suitability of the site for proposed use as the Macquarie University – Biological Science Building.

2. SITE INFORMATION

2.1 Site Identification

The investigation area comprises the following properties:

Street Address	Lot and Deposited Plan (DP)	Approximate Area (m²)		
205a Culloden Road, Macquarie Park NSW 2109	Part Lot 191 DP 1157041	7,500		

2.2 Site Zoning and Land Use

The site is zoned Mixed Use (B5) under the Ryde Local Environmental Plan 2014.

2.3 Site Description

The following site descriptions are based on a site inspection conducted by Geo-Logix on 30 August 2016. A photographic log is presented in Attachment A.

The site is located within the north western corner of the Macquarie University grounds, on the southern side of Culloden Road, within the Sydney suburb of Macquarie Park NSW (Figure 2). The site is the footprint of two proposed buildings, an L-shaped administration building and rectangular research building encompassing an area of approximately 7,500 m². At the time of Geo-Logix investigation, the site was predominated by grass lawn with sparsely treed areas in the northern and southern portions of site. Some fill including construction debris (bricks, concrete, etc.) was apparent in the treed areas.

An existing brick and metal clad building designated 'Brain, Behaviour and Evolution' exists to the immediate north of the site.

2.4 Surrounding Land Use

At the time of the investigation, the surrounding land use comprised the following:

- **North** The Brain Behaviour and Evolution Building and greenhouses with Culloden Road and residential properties beyond;
- South The Macquarie University Observatory building, car park and fields;
- East Bush land with Talavera Road and the M2 Motorway beyond; and
- West Culloden Road with residential properties and a playing field beyond.

2.5 Topography

The site slopes moderately towards the east from 69 mAHD to 64 mAHD. Regional topography slopes moderately to the east, south-east.

2.6 Surface Water Receptor

The nearest surface water is Mars Creek approximately 260 m south east of site. The creek flows into Lane Cover River, 750 m east of site.

2.7 Geology

Review of the NSW 1:100,000 Sydney Map (Geological Survey of NSW, 1983) indicates the site is on the border of

- Triassic age Ashfield Shale of the Wianamatta Group, comprising black to dark-grey shale and laminate; and
- Medium to course-grained quartz sandstone, very minor shale and laminate lenses.

2.8 Hydrogeology

It is expected that groundwater would follow the natural regional topography and generally flow eastsoutheast.

Reference to the NSW All Groundwater Map (NSW Department of Primary Industries, 2016) indicates there are no registered groundwater bores within a 500 m radius of the site. The groundwater bore map is presented in Attachment B.

2.9 Underground Utilities

A Dial Before You Dig search was conducted to determine the presence of underground utilities which may act as conduits for contamination migration both onsite and offsite (Attachment C). The plans indicate:

- AARNet Assets originating from Culloden Road run northwest-southeast, north of the site.
- Ausgrid, Telstra and Optus utilities run parallel beneath Culloden and Talavera Roads; and
- Jemena and Sydney Water utilities run parallel beneath Culloden Road.

3. PREVIOUS ENVIRONMENTAL INVESTIGATIONS

3.1 Geo-Logix (2016) Phase I Environmental Site Assessment

Geo-Logix completed a Phase 1 ESA for the subject site (Ref: 1601086Rpt01FinalV01_09Sep16) in September 2016. The Phase 1 ESA comprised a review of historical information pertaining to the proposed development area and a site inspection and identified the following potential sources of contamination:

- Orchards/Market Gardening from the late 1890s to the mid-1950s;
- Poultry farming which may have occurred on site between 1930 and 1946;
- Potential hazardous building materials in shallow soil from demolition of former structures; and
- Fill of unknown origin containing demolition debris identified during Geo-Logix's site inspection.

An intrusive Phase 2 ESA investigation was recommended to assess the land for contamination from potentially contaminating activities.

4. POTENTIAL SITE CONTAMINATION

Based on the site history the following potential contamination issues and Contaminants of Potential Concern (COPC) were identified for the subject site.

Orchards/Market Gardening

The site was occupied by orchards from the late 1890s to the mid-1950s. Market gardens with accompanying residences dominated the site from the mid-1950s until the late 1960s. Contamination of the land can occur through the application of pesticides and herbicides. Given the period during which orcharding and market gardening activities were undertaken at the site (1890s to 1960s), Organochlorine Pesticides (OCPs) and heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) are identified as the priority contaminants of potential concern due to their environmental persistence.

Poultry Farming

A poultry farmer owned portions of the site between 1930 and 1946. The aerial photographs from 1930 and 1943 do not suggest poultry farming occurred on the site. COPC associated with poultry farming comprise OCPs and heavy metals associated with pesticide application.

Hazardous Building Materials

Given the age of former structures observed in historical aerial photographs on the southwest portion of the site, the potential for the presence of hazardous building materials in shallow soils exists. The hazardous building materials of concern are lead-based paint and asbestos. The materials have the potential to be buried onsite from the demolition of previous structures.

Fill of unknown origin

During Geo-Logix's Phase I site inspection fill was observed in onsite treed areas. Fill related COPC include:

- Total Recoverable Hydrocarbons (TRH);
- Benzene, toluene, ethylbenzene, xylenes and naphthalene (BTEXN);
- Polyaromatic Hydrocarbons (PAH);
- OCPs;
- Polychlorinated Biphenyls (PCBs);
- Heavy metals; and
- Asbestos.

5. DATA QUALITY OBJECTIVES

The objective of the investigation was to assess the site for contamination that may have originated from historical site activities to determine the suitability of the site for the proposed use of the site as the Macquarie University – Biological Science Building.

To achieve the objective, Geo-Logix has adopted the seven step Data Quality Objective (DQO) process as described in AS 4482.1-2005, US EPA (2000) and DEC (2006).

Step 1: State the problem.

The subject site may be contaminated as a result of previous and current land use.

Step 2: Identify the decision.

Contamination has not been identified in soil at concentrations above the adopted assessment criteria. Therefore, the site is considered suitable for the proposed use as a biological sciences building.

Step 3: Identify inputs into the decision.

- Identification of issues of potential environmental concern and COPC (Section 4);
- Completion of a soil sampling and analysis program targeting contamination which may have arisen from past site activities (Sections 7.1–7.3);
- Appropriate quality assurance/control to enable an evaluation of the reliability of the analytical data (Section 7.4); and
- Screening sample analytical results against appropriate assessment criteria for the intended land use (Section 6).

Step 4: Define the boundaries of the site.

The project boundary is defined as the area within the site boundary (205a Culloden Road, Macquarie Park NSW) to a vertical depth of 200 mm below the base of fill.

Step 5: Develop a decision rule.

The results of the systematic soil sampling assessment must comply with the following decision rules:

- The 95% Upper Confidence Limit of COPC concentration data does not exceed the soil assessment criteria;
- No single sample exceeds 250% of the soil COPC assessment criteria;
- The standard deviation of COPC analytical results is less than 50% of the soil assessment criteria; and
- Asbestos was not visually observed on the site surface or in the subsurface at soil sampling locations.

The results of targeted/judgmental soil sampling assessments must comply with the following decision rules:

• No single sample exceeds the soil COPC assessment criteria.

Step 6: Specify acceptable limits on decision errors.

The field sampling methodology, sample preservation techniques, and laboratory analytical procedures must be appropriate to provide confidence in data quality so any comparison against assessment criteria can be considered reliable. This is achieved by defining and comparing results against the Data Quality Indicators (DQIs).

Step 7: Optimise the design for obtaining data.

This is achieved by sampling plan design in consideration of the available site history information, area of investigation, contaminant behaviour in the environment, and likely spatial distribution of contamination.

6. ASSESSMENT CRITERIA

Soil analytical data will be assessed against the following assessment criteria as presented in the Assessment of Site Contamination National Environment Protection Measure (NEPM). The NEPM states that investigation and screening levels are not clean-up or response levels, nor are they desirable quality criteria. Investigation and screening levels are intended for assessing existing contamination and trigger consideration of an appropriate site-specific risk based approach or appropriate risk management options when they are exceeded.

Based on the site's proposed use as a biological science building on the Macquarie University grounds and accessible to foot traffic, Geo-Logix has selected NEPM Tier 1 assessment criteria appropriate to education facilities with public open space.

NEPM Health Based Investigation Level (HILs) – Open Space/Recreational C

HILs are Tier 1 risk based generic assessment criteria used for the assessment of potential risks to human health from chronic exposure to contaminants in soil. They are intentionally conservative and based on a reasonable worst-case scenario for generic land use settings including Residential (HILs A/B), Open Space/Recreational (HILs C) and Commercial/Industrial (HILs D). HILs C soil assessment were adopted based on the proposed site use.

NEPM Health Screening Levels (HSLs) – Open Space/Recreational C

HSLs are Tier 1 risk based generic soil assessment criteria used for the assessment of potential risks to human health from chronic inhalation exposure of petroleum vapour emanating off petroleum contaminated soils (Vapour Risk). They are intentionally conservative and based on a reasonable worst-case scenario for generic soil types, contamination depth and land use settings including Residential (HSLs A/B), Open Space/Recreational (HSLs C) and Commercial/Industrial (HSLs D). Silt HSLs C soil assessment criteria were adopted based on the observed site geology and proposed site use.

NEPM Management Limits – Residential, parkland and public open space

Management Limits for petroleum have been developed for prevention of explosive vapour accumulation, prevention of the formation of observable Light Non-aqueous Phase Liquids (LNAPL) and protection against effects on buried infrastructure.

Residential, parkland and public open space limits were adopted based on the proposed site use.

NEPM Asbestos Health Screening Levels – Open Space/Recreational C

NEPM provides health screening levels for bonded asbestos containing material (ACM) and asbestos fines/friable asbestos (AF/FA) as concentration by weight in soil (%w/w). Based on the proposed site use Open Space/Recreational C health screening levels for bonded ACM have been adopted for the results of gravimetric analysis and for AF and FA detected by laboratory assessment utilising Polarised Light Microscopy (PLM).

NEPM Ecological Assessment – Site Specific

Ecological investigation levels (EILs) are used for the protection of terrestrial ecosystems and have been derived for common contaminants in soil based on a species sensitivity distribution model developed for Australian conditions. EILs apply principally to contaminants in the top 2 m of soil which corresponds to the root zone and habitation zone of many species. EILs have been developed for the following contaminants:

- Arsenic (As);
- Copper (Cu);
- Chromium III (CrIII);
- DDT;
- Naphthalene;
- Nickel (Ni);
- Lead (Pb); and
- Zinc (Zn).

EILs depend on specific soil physicochemical properties and land use scenarios. The protection levels for generic land use settings are:

- 99% for areas of ecological significance;
- 80% for urban residential areas and public open space; and
- 60% for commercial and industrial uses.

80% protection was adopted based on the proposed land use. Two surface soil samples from locations TP3/0.05 and TP17/0.2 were selected for laboratory analysis of clay content (% clay) cation exchange capacity (CEC) and pH by CaCl₂ extraction to determine appropriate EILs for site soils. Average background concentrations for an old (aged >2 years) NSW suburb with high traffic have been used in the calculation of EILs.

A summary of EILs adopted for site and rationale are detailed below.

Contaminant	EIL (mg/kg)	Rationale
As	100	Value for public open space use irrespective of physicochemical properties.
Cu	110	Calculated using an Added Contaminant Limit (ACL) for public open space use based on a CEC of 11.5, the average of two samples submitted for physicochemical analysis, and an Ambient Background Concentration (ABC) typical of an old NSW suburb with high traffic.
Cr III	410	Calculated using an ACL for public open space use based on a clay content of 27%, the average of two samples submitted for physicochemical analysis, and an ABC typical of an old NSW suburb with high traffic.
Ni	190	Calculated using an ACL for public open space use based on a CEC of 11.5, the average of two samples submitted for physicochemical analysis, and an ABC typical of an old NSW suburb with high traffic.
Pb	1,300	Calculated using the ACL for public open space use which is irrespective of physicochemical properties and an ABC typical of an old NSW suburb with high traffic.
Zn	300	Calculated using an ACL for public open space use based on a pH of 4.95 and a CEC of 11.5, the average of two samples submitted for physicochemical analysis, and an ABC typical of an old NSW suburb with high traffic.
DDT	180	Value for public open encoding imponenting of physics shemical properties
Naphthalene	170	value for public open space use mespective or physicochemical properties.

In addition, Ecological Screening Levels (ESLs) have been developed as ecologically based criteria. The ESLs are based on a review of Canadian guidance for petroleum hydrocarbons contamination in coarse and fine grained soil types and application of the Australian methodology.

A summary of ESLs adopted for site and rationale are detailed below.

Contaminant	ESL (mg/kg)	Rationale
F1 C ₆ -C ₁₀	180	
F2 C ₁₀ -C ₁₆	120	
F3 C ₁₆ -C ₃₄	1,300	
F4 C ₃₄ -C ₄₀	2,800	
Benzene	65	Value for public open space use in fine grained soil.
Toluene	105	
Ethylbenzene	125	
Xylenes	45	
Benzo(a)pyrene	0.7	

7. INVESTIGATION METHODOLOGIES

Geo-Logix conducted environmental investigation during the period 13 to 14 September 2016.

7.1 Sampling Analysis Plan

Soil contamination, if present, is likely to be expressed in shallow soils. To assess for contamination Geo-Logix completed systematic sampling of shallow soils across the site from 19 locations (TP1–TP19) on a 20 m sampling grid. A 20 m grid is sufficient to identify circular contamination hotspots equal to or greater than 23.6 m diameter at 95% statistical degree of certainty. The sampling density meets minimum sampling standards for the site area (7,500 m²) as per NSW EPA (1995).

Fill Soil

Based on the site history and field observations the onsite fill appears to comprise tilled earth resulting from past market gardening activities. The following sampling and analysis program was completed to target contamination of fill arising from market gardening, poultry farming, hazardous building materials from previously demolished buildings and, conservatively, fill of unknown origin:

- Analysis of a 10 L bulk shallow soil sample from each grid location for bonded asbestos by visual assessment in accordance with the gravimetric method described in the WA DOH Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (WA DOH, 2009);
- Analysis of three 500 mL shallow soil samples from selected locations for laboratory identification of asbestos fines and/or fibres by Polarised Light Microscopy (PLM) and Dispersion Staining (DS) in accordance with WA DOH (2009);
- Collection of a fill sample from the top 0.2 m of soil in each grid location;
- Analysis of each shallow soil sample collected in fill for TRH, BTEXN, PAH, OCPs, PCBs, and heavy metals,

Natural Soil

The following sampling and analysis program was completed to target contamination of natural soil arising from historical market gardening and poultry farming, and from hazardous building materials from previously demolished buildings:

- Analysis of a 10 L bulk shallow soil sample from each grid location for bonded asbestos by visual assessment in accordance with the gravimetric method described in WA DOH (2009);
- Collection of a soil sample from the top 0.2 m of natural soil in each grid sampling location;
- Where no fill was present this sample was submitted for laboratory analysis of OCPs and heavy metals; and
- Two natural soil samples, collected from the top 0.2 m of natural soil underlying fill, were selected from broadly spaced locations and submitted for analysis of OCPs, PCBs and heavy metals.

7.2 Soil Sampling Methodology

Test pits TP1 to TP19 were excavated with a shovel to a depth of approximately 200 mm below the base of fill. Soil samples were collected directly from the test pit.

Soil samples for laboratory analysis of COPC other than asbestos were placed in laboratory prepared jars, labelled and placed on ice in an esky for transport under chain of custody to a NATA Accredited Laboratory for analysis.

Soil samples for laboratory analysis of asbestos were placed in laboratory prepared bags, labelled and placed in an esky for transport under chain of custody to a NATA Accredited Laboratory for analysis.

Soil samples for gravimetric analysis were measured using a 10 L bucket and spread on a tarp of contrasting colour (blue) to facilitate visual identification of bonded ACM fragments.

Test pit logs are presented in Attachment D.

7.3 Delineation Sampling Methodology

Upon receipt of analytical results from the scope of work described in Section 7.1, Geo-Logix completed additional sampling and analysis to delineate the extent of PAH contamination identified in fill at test pit TP11:

- Analysis of the soil sample collected from the natural soil underlying fill in test pit TP11 for PAH;
- Excavation of four test pits (TP11/N, TP11/E, TP11/S and TP11/W) using a shovel. Test pits were located 1 m horizontal distance from test pit TP11 in each of the four cardinal directions;
- Collection of fill and natural soil samples from each test pit; and
- Analysis of the four fill samples collected for PAH.

7.4 Quality Assurance

Quality control (QC) sampling was undertaken in general accordance with specifications outlined in AS4482.1, *Guide to Sampling and Investigation of Potentially Contaminated Soil.* Geo-Logix QC samples included the following:

Sample Identification	Sample Type	Sample Matrix	Rate of Collection
SD1	Field duplicate of TP16/0.2	Soil	1 in 20 samples
ST1	Field triplicate of TP16/0.2	Soil	1 in 20 samples
SD2	Field duplicate of TP18/0.2	Soil	1 in 20 samples
ST2	Field triplicate of TP18/0.2	Soil	1 in 20 samples
R1	Sampling equipment rinsate	Water	1 per day of soil sampling
R2	Sampling equipment rinsate	Water	1 per day of soil sampling

Note - Rate of QC sample collection specified as 1 in 20 samples in AS4482.1

The laboratory internal QC procedures are consistent with NEPM policy on laboratory analysis of contaminated soils.

8. INVESTIGATION RESULTS

8.1 Site Geology

Fill material was encountered across the majority of the site to a typical depth of 0.3 mbg. The fill material generally consisted of poorly graded sand. Trace anthropogenic material including concrete, brick and timber fragments was observed in fill. No hydrocarbon odours or staining were noted in fill and ACM was not observed in fill at all sample locations. The fill material overlay moderate reddish orange, stiff, highly plastic Clay (CH) with sand and trace gravel. For soil descriptions of specific locations please refer to the attached test pit logs.

8.2 Soil Analytical Results

Soil analytical results are summarised in Tables 1 through 6. Laboratory reports are presented in Attachment E.

TRH and BTEXN

TRH were detected at concentrations greater than laboratory reporting limits but less than assessment criteria in fill samples from locations TP6, TP8, TP11, TP12, TP15, TP17 and TP19.

Petroleum hydrocarbons were not detected at concentrations greater than assessment criteria in all soil samples analysed (Table 1).

TRH were not otherwise detected at concentrations greater than laboratory reporting limits in all soil samples analysed.

BTEXN were not detected at concentrations greater than laboratory reporting limits in all soil samples analysed.

PAH

Benzo(a)pyrene was detected at a concentration greater than 2.5 times the adopted assessment criteria for the protection of the environment in sample TP11/0.1 (Table 2). The benzo(a)pyrene toxicity equivalent quotient (TEQ) of carcinogenic PAH was calculated at a concentration greater than 2.5 times the adopted assessment criteria for the protection of human health in sample TP11/0.1.

PAH were not otherwise detected in soil at concentrations greater than assessment criteria in all soil samples analysed.

OCPs

OCPs were detected at concentrations greater than laboratory reporting limits but less than assessment criteria in shallow soil samples from locations TP11, TP12, TP13, TP16, TP17 and TP18 (Table 3).

OCPs were not otherwise detected in soil at concentrations greater than laboratory reporting limits in all soil samples analysed.

PCBs

PCBs were not detected in soil at concentrations greater than laboratory reporting limits in all soil samples analysed (Table 4).

Heavy Metals

Arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc were not detected at concentrations greater than the assessment criteria in all soil samples analysed (Table 5).

Asbestos

ACM was not visually identified during fieldworks. Asbestos was not detected in all soil samples analysed (Table 6).

8.3 Delineation Sample Analytical Results

PAH including benzo(a)pyrene were not detected at concentrations greater than laboratory reporting limits in the underlying natural soil sample from location TP11 or in the fill samples collected from test pits TP11/N, TP11/E, TP11/S or TP11/W.

8.4 QA/QC Results

Soil duplicate/triplicate results are within the adopted acceptance criteria of 30-50% (AS4482.1) relative percent difference (RPD) with the exception of the following:

• Arsenic in triplicate pair TP16/0.2 and TS1

The RPD exceedance is attributed the low levels detected (< 5 times LOR).

COPC were not detected at concentrations above laboratory reporting limits in the rinsate samples collected from the soil sampling equipment indicating decontamination procedures were adequate to prevent cross contamination.

A summary of Laboratory QA/QC data is presented on the following table.

Report #	Analysis Within Holding Time	Surrogate Recovery	Lab. Duplicate RPD % Recovery		Lab. Control Sample	Lab Method Blank		
515897-S	~	\checkmark	X*	1	~	~		
515897-W	~	√	✓	1	~	~		
515899-S	-	-	-	-	-	-		
515980-S-V2	√	√	~	1	~	1		
517185-S	~	√	~	1	~	~		
517594-S	√	\checkmark	✓	√	~	~		
√ = Pass >	K = Fail - = not	required * =	refer to report text					
Quality Assuran	ce Criteria		Quality Control Criteria					
Holding Times			Accuracy					
VOCs – 14 days	(soil/water), 30 days	s (soil vapour)	Surrogate, matrix spike, control sample 70–130% (30–130% for Phenols)					
SVOCs - 7 days	(water), 14 days (sc	oil)	Surrogate recovery 50–150% and 20–130% for Phenols					
Metals – 7 days,	28 days (mercury)		Precision					
			Method Blank – Not detected					
			Duplicate - No limit (<10xEQL), 0-50% (10-20xEQL), 0-200% (>20xEQL)					

The laboratory QA/QC was within the acceptable limits with the exception of the following:

515897-S

The laboratory duplicate RPD exceeded acceptance criteria of 30–50% for 4.4'-DDE however was accepted under the laboratory QC guidelines as the results were <10 times the LOR.

Geo-Logix accepts the integrity of the analytical data.

9. DISCUSSION AND CONCLUSION

PAH were detected at elevated concentrations in fill at sample location TP11. The results of delineation sampling completed in the near vicinity indicate the PAH detection was a one-off isolated occurrence. The PAH in fill is not considered significant and does not warrant remediation.

No other COPC were detected at concentrations greater than assessment criteria. Geo-Logix considers the site suitable for the proposed Macquarie University – Biological Science Building.

10. LIMITATIONS

This report should be read in full, and no executive summary, conclusion or other section of the report may be used or relied on in isolation, or taken as representative of the report as a whole. No responsibility is accepted by Geo-Logix, and any duty of care that may arise but for this statement is excluded, in relation to any use of any part of this report other than on this basis.

This report has been prepared for the sole benefit of and use by the Client. No other person may rely on the report for any purpose whatsoever except with Geo-Logix's express written consent. Any duty of care to third parties that would or may arise in respect of persons other than the Client, but for this statement, is excluded.

Geo-Logix owns the copyright in this report. No copies of this report are to be made or distributed by any person without express written consent to do so from Geo-Logix. If the Client provides a copy of this report to a third party, without Geo-Logix's consent, the Client indemnifies Geo-Logix against all loss, including without limitation consequential loss, damage and/or liability, howsoever arising, in connection with any use or reliance by a Third Party.

The works undertaken by Geo-Logix are based solely on the scope of works, as agreed by the Client (Scope of Works). No other investigations, sampling, monitoring works or reporting will be carried out other than as expressly provided in the Scope of Works. A COPY OF THE SCOPE OF WORKS IS AVAILABLE ON REQUEST.

To the extent permitted by law, Geo-Logix makes no warranties or representations as to the:

- a. suitability of the Site for any specific use, or category of use, or
- b. potential statutory requirements for remediation, if any, of the Site,
- c. approvals, if any, that may be needed in respect of any use or category of use, or
- d. level of remediation, if any, that is warranted to render the Site suitable for any specific use, or category of use, or
- e. level of ongoing monitoring of Site conditions, if any, that is required in respect of any specific use, or category of use, or
- f. presence, extent or absence of any substance in, on or under the Site, other than as expressly stated in this report.

The conclusions stated in this report are based solely on the information, Scope of Works, analysis and data that are stated or expressly referred to in this report.

To the extent that the information and data relied upon to prepare this report has been conveyed to Geo-Logix by the Client or third parties orally or in the form of documents, Geo-Logix has assumed that the information and data are completely accurate and has not sought independently to verify the accuracy of the information or data. Geo-Logix assumes no responsibility or duty of care in respect of any errors or omissions in the information or data provided to it.

Without limiting the paragraph above, where laboratory tests have been carried out by others on Geo-Logix's behalf, the tests are reproduced in this report on the assumption that the tests are accurate. Geo-Logix has not sought independently to verify the accuracy of those tests and assumes no responsibility in respect of them.

Geo-Logix assumes no responsibility in respect of any changes in the condition of the Site which have occurred since the time when Geo-Logix gathered data and/or took samples from the Site on its site inspections dated **13-14 September 2016**.

Given the nature of asbestos, and the difficulties involved in identifying asbestos fibres, despite the exercise of all reasonable due care and diligence, thorough investigations may not always reveal its presence in either buildings or fill. Even if asbestos has been tested for and those tests' results do not reveal the presence of asbestos at those specific points of sampling, asbestos or asbestos containing materials may still be present at the Site, particularly if fill has been imported at any time, buildings constructed prior to 1980 have been demolished on the Site or materials from such buildings have been disposed of on the Site.

Where the Scope of Works does not include offsite investigations, Geo-Logix provides no warranty as to offsite conditions, including the extent if any to which substances in the Site may be emanating off site, and if so whether any adjoining sites have been or may be impacted by contamination originating from the Site.

Where the Scope of Works does not include the investigation, sampling, monitoring or other testing of groundwater in, on or under the Site, Geo-Logix provides no warranty or representation as to the quality of groundwater on the Site or the actual or potential migration of contamination in groundwater across or off the Site.

Subsurface site conditions are typically heterogeneous, and may change with time. Samples taken from different points on the Site may not enable inferences to be drawn about the condition of areas of the Site significantly removed from the sample points, or about the condition of any part of the Site whatsoever, in particular where the proposed inferences are to be drawn a long time after the date of the report.

Geo-Logix has prepared this report with the diligence, care and skill which a reasonable person would expect from a reputable environmental consultancy and in accordance with environmental regulatory authority and industry standards, guidelines and assessment criteria applicable as at the date of this report. Industry standards and environmental criteria change frequently, and may change at any time after the date of this report.

11. REFERENCES

ANZECC & ARMECC (2000) Australian and New Zealand Guidelines for Freshwater and Marine Water, Australia and New Zealand Environment Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.

Australian Standard (2005) AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Volatile and Semi-volatile compounds. Standards Australia.

Australian Standard (2005) AS 4482.2-1999 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 2: Volatile substances. Standards Australia.

Geo-Logix (2015) Phase I Environmental Site Assessment, 205a Culloden Road, Macquarie Park NSW. Report Ref 1601086Rpt01FinalV01_09Sep16.

Google (2016). Google Earth interactive map, Macquarie Park NSW.

Herbert C. (1983) Sydney 1:100 000 Geological Sheet 9130, 1st edition. Geological Survey of New South Wales, Sydney.

NEPC (1999) Amended National Environmental Protection Measure (2013), National Environmental Protection Council.

NSW DEC (2006) Guidelines for NSW Site Auditor Scheme, NSW Department of Environment and Conservation.

NSW EPA (1995) *Contaminated Sites Sampling Design Guidelines*, NSW Environmental Protection Authority.

NSW Government (2016) Groundwater Works Report. www.allwaterdata.water.nsw.gov.au/water.stm.

US EPA (2000) Data Quality Objectives Process for Hazardous Wastes Site Investigations EPAQA/G-4HW, United States Environmental Protection Agency. **FIGURES**

TABLES

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	TP1/0.1	TP2/0.1	TP3/0.05	TP4/0.05	TP5/0.2
	HSLs - C	Management	ESLs	EILS	Depth (m)	0.1	0.1	0.05	0.05	0.2
	Silt	Limits	Urban Res	Urban	Туре	Topsoil	Fill	Topsoil	Topsoil	Fill
	0 to <1 m	Res/Park	Fine Soil	Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
TRH C6-C10	-	800	-	-			< 20			< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	NL	-	180	-			< 20			< 20
TRH >C10-C16	-	1,000	-	-			< 50			< 50
TRH >C10-C16 less Naphthalene (F2)	NL	-	120	-			< 50			< 50
TRH >C16-C34	-	3,500	1,300	-			< 100			< 100
TRH >C34-C40	-	10,000	5,600	-			< 100			< 100
Benzene	NL	-	65	-			< 0.1			< 0.1
Toluene	NL	-	105	-			< 0.1			< 0.1
Ethylbenzene	NL	-	125	-			< 0.1			< 0.1
m&p-Xylenes	-	-	-	-			< 0.2			< 0.2
o-Xylene	-	-	-	-			< 0.1			< 0.1
Xylenes - Total	NL	-	45	-			< 0.3			< 0.3
Naphthalene	NL	-	-	170			< 0.5			< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available NL = not limiting

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2

- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate
- nc = RPD not calculated, one or both samples below laboratory reporting limit
- < # or ND = analyte(s) not detected in excess of laboratory reporting limit
- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	TP6/0.1	TP7/0.1	TP8/0.15	TP9/0.1	TP9/0.3
	HSLs - C	Management	ESLs	EILS	Depth (m)	0.1	0.1	0.15	0.1	0.3
	Silt	Limits	Urban Res	Urban	Туре	Fill	Fill	Fill	Fill	Clay
	0 to <1 m	Res/Park	Fine Soil	Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
TRH C6 -C 10	-	800	-	-		< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1)	NL	-	180	-		< 20	< 20	< 20	< 20	
TRH >C10-C16	-	1,000	-	-		< 50	< 50	71	< 50	
TRH >C10-C16 less Naphthalene (F2)	NL	-	120	-		< 50	< 50	71	< 50	
TRH >C16-C34	-	3,500	1,300	-		< 100	< 100	290	< 100	
TRH >C34-C40	-	10,000	5,600	-		< 100	< 100	< 100	< 100	
Benzene	NL	-	65	-		< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	NL	-	105	-		< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	NL	-	125	-		< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	-	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	-	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total	NL	-	45	-		< 0.3	< 0.3	< 0.3	< 0.3	
Naphthalene	NL	-	-	170		< 0.5	< 0.5	< 0.5	< 0.5	

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available NL = not limiting

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2

- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate
- nc = RPD not calculated, one or both samples below laboratory reporting limit
- < # or ND = analyte(s) not detected in excess of laboratory reporting limit
- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	TP10/0.2	TP11/0.1	TP12/0.2	TP13/0.1	TP14/0.25
	HSLs - C	Management	ESLs	EILS	Depth (m)	0.2	0.1	0.2	0.1	0.25
	Silt	Limits	Urban Res	Urban	Туре	Fill	Fill	Fill	Fill	Fill
	0 to <1 m	Res/Park	Fine Soil	Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
IRH C6-C10	-	800	-	-		< 20	< 20	< 20	< 20	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	NL	-	180	-		< 20	< 20	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-	-		< 50	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	NL	-	120	-		< 50	< 50	< 50	< 50	< 50
TRH >C16-C34	-	3,500	1,300	-		< 100	1,000	110	< 100	< 100
TRH >C34-C40	-	10,000	5,600	-		< 100	< 100	< 100	< 100	< 100
Benzene	NL	-	65	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	NL	-	105	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	NL	-	125	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	NL	-	45	-		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene	NL	-	-	170		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in μg/L. - = assessment criteria not available NL = not limiting

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2

RS1 = rinsate sample

- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate
- nc = RPD not calculated, one or both samples below laboratory reporting limit
- < # or ND = analyte(s) not detected in excess of laboratory reporting limit
- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	TP15/0.2	TP15/0.4	TP16/0.2	DS1	RPD_DS1
	HSLs - C	Management	ESLs	EILS	Depth (m)	0.2	0.4	0.2	-	-
	Silt	Limits	Urban Res	Urban	Туре	Fill	Clay	Fill	Duplicate	-
	0 to <1 m	Res/Park	Fine Soll	Residential	Date	14/09/2016	14/09/2016	14/09/2016	14/09/2016	-
TRH C6-C10	-	800	-	-		< 20		< 20	< 20	nc
TRH C6-C10 less BTEX (F1)	NL	-	180	-		< 20		< 20	< 20	nc
TRH >C10-C16	-	1,000	-	-		< 50		< 50	< 50	nc
TRH >C10-C16 less Naphthalene (F2)	NL	-	120	-		< 50		< 50	< 50	NC
TRH >C16-C34	-	3,500	1,300	-		< 100		< 100	< 100	NC
TRH >C34-C40	-	10,000	5,600	-		< 100		< 100	< 100	nc
Benzene	NL	-	65	-		< 0.1		< 0.1	< 0.1	nc
Toluene	NL	-	105	-		< 0.1		< 0.1	< 0.1	nc
Ethylbenzene	NL	-	125	-		< 0.1		< 0.1	< 0.1	nc
m&p-Xylenes	-	-	-	-		< 0.2		< 0.2	< 0.2	nc
o-Xylene	-	-	-	-		< 0.1		< 0.1	< 0.1	nc
Xylenes - Total	NL	-	45	-		< 0.3		< 0.3	< 0.3	nc
Naphthalene	NL	-	-	170		< 0.5		< 0.5	< 0.5	nc

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available NL = not limiting

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2

- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate
- nc = RPD not calculated, one or both samples below laboratory reporting limit
- < # or ND = analyte(s) not detected in excess of laboratory reporting limit
- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	TS1	RPD_TS1	TP17/0.2	TP18/0.2	DS2
	HSLs - C	Management	ESLs	EILS	Depth (m)	-	-	0.2	0.2	-
	Silt	Limits	Urban Res	Urban	Туре	Triplicate	-	Fill	Fill	Duplicate
	0 to <1 m	Res/Park	Fine Soil	Residential	Date	14/09/2016	-	14/09/2016	14/09/2016	14/09/2016
TRH C6-C10	-	800	-	-		< 20	nc	< 20	< 20	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	NL	-	180	-		< 20	пс	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-	-		< 50	ПС	63	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	NL	-	120	-		< 50	ПС	63	< 50	< 50
TRH >C16-C34	-	3,500	1,300	-		< 100	пс	250	< 100	100
TRH >C34-C40	-	10,000	5,600	-		< 100	пс	< 100	< 100	< 100
Benzene	NL	-	65	-		< 0.1	пс	< 0.1	< 0.1	< 0.1
Toluene	NL	-	105	-		< 0.1	пс	< 0.1	< 0.1	< 0.1
Ethylbenzene	NL	-	125	-		< 0.1	пс	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-	-		< 0.2	пс	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-	-		< 0.1	пс	< 0.1	< 0.1	< 0.1
Xylenes - Total	NL	-	45	-		< 0.3	пс	< 0.3	< 0.3	< 0.3
Naphthalene	NL	-	-	170		< 0.5	пс	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in μg/L. - = assessment criteria not available NL = not limiting

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2

- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate
- nc = RPD not calculated, one or both samples below laboratory reporting limit
- < # or ND = analyte(s) not detected in excess of laboratory reporting limit
- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

205a Culloden Road Macquarie Park NSW 2109

Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	RPD_DS2	TS2	RPD_TS2	TP19/0.2	RS1
HSLs - C	Management	ESLs	EILS	Depth (m)	-	-	-	0.2	-
Silt	Limits	Urban Res	Urban	Туре	-	Triplicate	-	Fill	Rinsate
0 to <1 m	Res/Park	Fine Soil	Residential	Date	-	14/09/2016	-	14/09/2016	13/09/2016
-	800	-	-		пс	< 20	пс	< 20	
NL	-	180	-		пс	< 20	пс	< 20	
-	1,000	-	-		пс	< 50	пс	< 50	
NL	-	120	-		пс	< 50	пс	< 50	
-	3,500	1,300	-		пс	< 100	пс	160	
-	10,000	5,600	-		пс	< 100	ПС	< 100	
NL	-	65	-		пс	< 0.1	пс	< 0.1	
NL	-	105	-		пс	< 0.1	пс	< 0.1	
NL	-	125	-		пс	< 0.1	пс	< 0.1	
-	-	-	-		пс	< 0.2	ПС	< 0.2	
-	-	-	-		пс	< 0.1	пс	< 0.1	
NL	-	45	-		пс	< 0.3	пс	< 0.3	
NL	-	-	170		пс	< 0.5	ПС	< 0.5	
	Criteria 1 HSLs - C Silt 0 to <1 m - NL - NL - NL - NL NL - NL - NL - NL	Criteria 1 Criteria 2 HSLs - C Management Slit Limits 0 to <1 m Res/Park 0 to <1 m Res/Park - 800 NL - - 3,500 NL - NL -	Criteria 1Criteria 2Criteria 3HSLs - CManagementESLsSlitLimitsUrban Res0 to <1 mRes/ParkFine Soil-800800-NL-180-1,000-NL-120-3,5001,300-10,0005,600NL-65NL-105NL-125NL-45NLNL	Criteria 1Criteria 2Criteria 3Criteria 4HSLs - CManagementESLsEILSSiltLimitsUrban ResUrban0 to <1 m	Criteria 1Criteria 2Criteria 3Criteria 4Sample IDHSLs - CManagementESLsEILSDepth (m)SlitLimitsUrban ResUrbanType0 to <1 m	Criteria 1Criteria 2Criteria 3Criteria 4Sample IDRPD_DS2HSLs - CManagementESLsEILSDepth (m)-SiltLImitsUrban ResUrbanType-0 to <1 m	Criteria 1Criteria 2Criteria 3Criteria 4Sample IDRPD_DS2TS2HSLs - CManagementESLsEILSDepth (m)SlitLImitsUrban ResUrbanType-Triplicate0 to <1 m	Criteria 1Criteria 2Criteria 3Criteria 4Sample IDRPD_DS2TS2RPD_TS2HSLs - CManagementESLsEILSDepth (m)SlitLImitsUrban ResUrbanType-Triplicate-0 to <1 m	Criteria 1 Criteria 2 Criteria 3 Criteria 4 Sample ID RPD_DS2 TS2 RPD_TS2 TP19/0.2 HSLs - C Management ESLs ELLS Depth (m) - - 0.2 Silt Limits Urban Res Urban Type - Triplicate - 14/09/2016 0 to <1 m

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available NL = not limiting

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2

RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	RS2
	HSLs - C	Management	ESLs	EILS	Depth (m)	-
	Silt	Limits	Urban Res	Urban	Туре	Rinsate
	0 to <1 m	Res/Park	Fine Soil	Residential	Date	14/09/2016
TRH C6-C10	-	800	-	-		
TRH C ₆ -C ₁₀ less BTEX (F1)	NL	-	180	-		
TRH >C10-C16	-	1,000	-	-		
TRH >C10-C16 less Naphthalene (F2)	NL	-	120	-		
TRH >C16-C34	-	3,500	1,300	-		
TRH >C34-C40	-	10,000	5,600	-		
Benzene	NL	-	65	-		
Toluene	NL	-	105	-		
Ethylbenzene	NL	-	125	-		
m&p-Xylenes	-	-	-	-		
o-Xylene	-	-	-	-		
Xylenes - Total	NL	-	45	-		
Naphthalene	NL	-	-	170		

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available NL = not limiting

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2

RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Sample ID	TP1/0.1	TP2/0.1	TP3/0.05	TP4/0.05	TP5/0.2
		ESLs	EILS	Depth (m)	0.1	0.1	0.05	0.05	0.2
	HILs - C	Urban Res	Urban	Туре	Topsoil	Fill	Topsoil	Topsoil	Fill
		Fine Soil	Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Acenaphthene	-	-	-			< 0.5			< 0.5
Acenaphthylene	-	-	-			< 0.5			< 0.5
Anthracene	-	-	-			< 0.5			< 0.5
Benz(a)anthracene	-	-	-			< 0.5			< 0.5
Benzo(a)pyrene	-	0.7	-			< 0.5			< 0.5
Benzo(b&j)fluoranthene	-	-	-			< 0.5			< 0.5
Benzo(g.h.i)perylene	-	-	-			< 0.5			< 0.5
Benzo(k)fluoranthene	-	-	-			< 0.5			< 0.5
Chrysene	-	-	-			< 0.5			< 0.5
Dibenz(a.h)anthracene	-	-	-			< 0.5			< 0.5
Fluoranthene	-	-	-			< 0.5			< 0.5
Fluorene	-	-	-			< 0.5			< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-			< 0.5			< 0.5
Naphthalene	-	-	170			< 0.5			< 0.5
Phenanthrene	-	-	-			< 0.5			< 0.5
Pyrene	-	-	-			< 0.5			< 0.5
Benzo(a)pyrene TEQ	3	-	-			0.6			0.6
Total PAH	300	-	-			< 0.5			< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values.

Total concentrations in mg/kg

Rinsate concentrations in µg/L. - = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2

- RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Sample ID	TP6/0.1	TP7/0.1	TP8/0.15	TP9/0.1	TP9/0.3
		ESLs	EILS	Depth (m)	0.1	0.1	0.15	0.1	0.3
	HILs - C	Urban Res	Urban	Туре	Fill	Fill	Fill	Fill	Clay
		Fine Soil	Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Acenaphthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene	-	0.7	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(b&j)fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(g.h.i)perylene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Chrysene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Dibenz(a.h)anthracene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Fluorene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	-	-	170		< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Pyrene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ	3	-	-		0.6	0.6	0.6	0.6	
Total PAH	300	-	-		< 0.5	< 0.5	< 0.5	< 0.5	

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values.

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2

- RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Sample ID	TP10/0.2	TP11/0.1	TP11/0.3	TP11/E/0.1	TP11/N/0.1
		ESLs	EILS	Depth (m)	0.2	0.1	0.3	0.1	0.1
	HILs - C	Urban Res	Urban	Туре	Fill	Fill	Clay	Fill	Fill
		Fine Soil	Residential	Date	13/09/2016	13/09/2016	13/09/2016	27/09/2016	27/09/2016
Acenaphthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-		< 0.5	1.7	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-		< 0.5	2.1	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	-	-	-		< 0.5	7.7	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	-	0.7	-		< 0.5	4.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene	-	-	-		< 0.5	2.7	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-		< 0.5	3.3	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	-	-	-		< 0.5	4.2	< 0.5	< 0.5	< 0.5
Chrysene	-	-	-		< 0.5	7.1	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	-	-	-		< 0.5	1.5	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-		< 0.5	13	0.6	< 0.5	< 0.5
Fluorene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-		< 0.5	3.3	< 0.5	< 0.5	< 0.5
Naphthalene	-	-	170		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-		< 0.5	4.4	< 0.5	< 0.5	< 0.5
Pyrene	-	-	-		< 0.5	11	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ	3	-	-		0.6	7.9	0.6	0.6	0.6
Total PAH	300	-	-		< 0.5	66.5	0.6	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values.

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2

RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Sample ID	TP11/S/0.1	TP11/W/0.2	TP12/0.2	TP13/0.1	TP14/0.25
		ESLs	EILS	Depth (m)	0.1	0.2	0.2	0.1	0.25
	HILs - C	Urban Res	Urban	Туре	Fill	Fill	Fill	Fill	Fill
		Fine Soil	Residential	Date	27/09/2016	27/09/2016	13/09/2016	13/09/2016	13/09/2016
Acenaphthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	-	0.7	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	-	-	170		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ	3	-	-		0.6	0.6	0.6	0.6	0.6
Total PAH	300	-	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values.

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2

RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Sample ID	TP15/0.2	TP15/0.4	TP16/0.2	DS1	RPD_DS1
		ESLs	EILS	Depth (m)	0.2	0.4	0.2	-	-
	HILs - C	Urban Res	Urban	Туре	Fill	Clay	Fill	Duplicate	-
		Fine Soil	Residential	Date	14/09/2016	14/09/2016	14/09/2016	14/09/2016	-
Acenaphthene	-	-	-		< 0.5		< 0.5	< 0.5	nc
Acenaphthylene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Anthracene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Benz(a)anthracene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Benzo(a)pyrene	-	0.7	-		< 0.5		< 0.5	< 0.5	пс
Benzo(b&j)fluoranthene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Benzo(g.h.i)perylene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Benzo(k)fluoranthene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Chrysene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Dibenz(a.h)anthracene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Fluoranthene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Fluorene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Indeno(1.2.3-cd)pyrene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Naphthalene	-	-	170		< 0.5		< 0.5	< 0.5	пс
Phenanthrene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Pyrene	-	-	-		< 0.5		< 0.5	< 0.5	пс
Benzo(a)pyrene TEQ	3	-	-		0.6		0.6	0.6	0%
Total PAH	300	-	-		< 0.5		< 0.5	< 0.5	пс

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values.

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2 RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Sample ID	TS1	RPD_TS1	TP17/0.2	TP18/0.2	DS2
		ESLs	EILS	Depth (m)	-	-	0.2	0.2	-
	HILs - C	Urban Res	Urban	Туре	Triplicate	-	Fill	Fill	Duplicate
		Fine Soil	Residential	Date	14/09/2016	-	14/09/2016	14/09/2016	14/09/2016
Acenaphthene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	-	0.7	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Chrysene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Fluorene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Naphthalene	-	-	170		< 0.5	пс	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Pyrene	-	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ	3	-	-		0.6	0%	0.6	0.6	0.6
Total PAH	300	-	-		< 0.5	пс	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values.

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2

- RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Sample ID	RPD_DS2	TS2	RPD_TS2	TP19/0.2	RS1
		ESLs	EILS	Depth (m)	-	-	-	0.2	-
	HILs - C	Urban Res	Urban	Туре	-	Triplicate	-	Fill	Rinsate
		Fine Soil	Residential	Date	-	14/09/2016	-	14/09/2016	13/09/2016
Acenaphthene	-	-	-		пс	< 0.5	пс	< 0.5	
Acenaphthylene	-	-	-		пс	< 0.5	пс	< 0.5	
Anthracene	-	-	-		пс	< 0.5	пс	< 0.5	
Benz(a)anthracene	-	-	-		пс	< 0.5	пс	< 0.5	
Benzo(a)pyrene	-	0.7	-		пс	< 0.5	пс	< 0.5	
Benzo(b&j)fluoranthene	-	-	-		пс	< 0.5	пс	< 0.5	
Benzo(g.h.i)perylene	-	-	-		пс	< 0.5	пс	< 0.5	
Benzo(k)fluoranthene	-	-	-		пс	< 0.5	пс	< 0.5	
Chrysene	-	-	-		пс	< 0.5	пс	< 0.5	
Dibenz(a.h)anthracene	-	-	-		пс	< 0.5	пс	< 0.5	
Fluoranthene	-	-	-		пс	< 0.5	пс	< 0.5	
Fluorene	-	-	-		пс	< 0.5	пс	< 0.5	
Indeno(1.2.3-cd)pyrene	-	-	-		пс	< 0.5	пс	< 0.5	
Naphthalene	-	-	170		пс	< 0.5	пс	< 0.5	
Phenanthrene	-	-	-		пс	< 0.5	пс	< 0.5	
Pyrene	-	-	-		пс	< 0.5	пс	< 0.5	
Benzo(a)pyrene TEQ	3	-	-		0%	0.6	0%	0.6	
Total PAH	300	-	-		пс	< 0.5	пс	< 0.5	

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values.

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2

- RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Criteria 3	Sample ID	RS2		
		ESLs	EILS	Depth (m)	-		
	HILs - C	Urban Res	Urban	Туре	Rinsate		
		Fine Soil	Residential	Date	14/09/2016		
Acenaphthene	-	-	-				
Acenaphthylene	-	-	-				
Anthracene	-	-	-				
Benz(a)anthracene	-	-	-				
Benzo(a)pyrene	-	0.7	-				
Benzo(b&j)fluoranthene	-	-	-				
Benzo(g.h.i)perylene	-	-	-				
Benzo(k)fluoranthene	-	-	-				
Chrysene	-	-	-				
Dibenz(a.h)anthracene	-	-	-				
Fluoranthene	-	-	-				
Fluorene	-	-	-				
Indeno(1.2.3-cd)pyrene	-	-	-				
Naphthalene	-	-	170				
Phenanthrene	-	-	-				
Pyrene	-	-	-				
Benzo(a)pyrene TEQ	3	-	-				
Total PAH	300	-	-				

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values. Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available

DS1 = duplicate of TP16/0.2

- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2 RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

- < # or ND = analyte(s) not detected in excess of laboratory reporting limit
- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP1/0.1	TP2/0.1	TP3/0.05	TP4/0.05	TP5/0.2
		EILS	Depth (m)	0.1	0.1	0.05	0.05	0.2
	HILs - C	Urban	Туре	Topsoil	Fill	Topsoil	Topsoil	Fill
		Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
4.4'-DDD	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	-	180		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	70	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	20	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	10	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	10	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2 TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP1/0.1	TP2/0.1	TP3/0.05	TP4/0.05	TP5/0.2
		EILS	Depth (m)	0.1	0.1	0.05	0.05	0.2
	HILs - C	Urban	Туре	Topsoil	Fill	Topsoil	Topsoil	Fill
		Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Methoxychlor	400	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	30	-		< 1	< 1	< 1	< 1	< 1
Aldrin + Dieldrin	10	-		ND	ND	ND	ND	ND
Endosulfans - Total	340	-		ND	ND	ND	ND	ND
DDD + DDE + DDT	400	-		ND	ND	ND	ND	ND
Scheduled Chemical Wastes	-	-		ND	ND	ND	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2 TS2 = triplicate of TP18/0.2
- 132 = tripricate or 1P16/0.2
- RS1 = rinsate sample RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP6/0.1	TP7/0.1	TP8/0.15	TP9/0.1	TP9/0.3
		EILS	Depth (m)	0.1	0.1	0.15	0.1	0.3
	HILs - C	Urban	Туре	Fill	Fill	Fill	Fill	Clay
		Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
4.4'-DDD	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	-	180		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	70	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	20	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	10	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	10	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2 TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP6/0.1	TP7/0.1	TP8/0.15	TP9/0.1	TP9/0.3
		EILS	Depth (m)	0.1	0.1	0.15	0.1	0.3
	HILs - C	Urban	Туре	Fill	Fill	Fill	Fill	Clay
		Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Methoxychlor	400	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	30	-		< 1	< 1	< 1	< 1	< 1
Aldrin + Dieldrin	10	-		ND	ND	ND	ND	ND
Endosulfans - Total	340	-		ND	ND	ND	ND	ND
DDD + DDE + DDT	400	-		ND	ND	ND	ND	ND
Scheduled Chemical Wastes	-	-		ND	ND	ND	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

DS1 = duplicate of TP16/0.2

- TS1 = triplicate of TP16/0.2 DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2

RS1 = rinsate sample

- RS1 = rinsate sampleRS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP10/0.2	TP11/0.1	TP12/0.2	TP13/0.1	TP14/0.25
		EILS	Depth (m)	0.2	0.1	0.2	0.1	0.25
	HILs - C	Urban	Туре	Fill	Fill	Fill	Fill	Fill
		Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
4.4'-DDD	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-	-		< 0.05	0.07	0.13	< 0.05	< 0.05
4.4'-DDT	-	180		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	70	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-	-		< 0.05	< 0.05	< 0.05	0.07	< 0.05
Endosulfan I	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	20	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	10	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	10	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2 TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP10/0.2	TP11/0.1	TP12/0.2	TP13/0.1	TP14/0.25
		EILS	Depth (m)	0.2	0.1	0.2	0.1	0.25
	HILs - C	Urban	Туре	Fill	Fill	Fill	Fill	Fill
		Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Methoxychlor	400	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	30	-		< 1	< 1	< 1	< 1	< 1
Aldrin + Dieldrin	10	-		ND	ND	ND	0.07	ND
Endosulfans - Total	340	-		ND	ND	ND	ND	ND
DDD + DDE + DDT	400	-		ND	0.07	0.13	ND	ND
Scheduled Chemical Wastes	-	-		ND	0.07	0.13	0.07	ND

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2

RS1 = rinsate sample RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP15/0.2	TP15/0.4	TP16/0.2	DS1	RPD_DS1
		EILS	Depth (m)	0.2	0.4	0.2	-	-
	HILs - C	Urban	Туре	Fill	Clay	Fill	Duplicate	-
		Residential	Date	14/09/2016	14/09/2016	14/09/2016	14/09/2016	-
4.4'-DDD	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
4.4'-DDE	-	-		< 0.05	< 0.05	0.19	0.25	27%
4.4'-DDT	-	180		< 0.05	< 0.05	< 0.05	0.05	пс
a-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Aldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	пс
b-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Chlordanes - Total	70	-		< 0.1	< 0.1	< 0.1	< 0.1	nc
d-BHC	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Dieldrin	-	-		< 0.05	< 0.05	< 0.05	< 0.05	пс
Endosulfan I	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Endosulfan II	-	-		< 0.05	< 0.05	< 0.05	< 0.05	пс
Endosulfan sulphate	-	-		< 0.05	< 0.05	< 0.05	< 0.05	пс
Endrin	20	-		< 0.05	< 0.05	< 0.05	< 0.05	пс
Endrin aldehyde	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Endrin ketone	-	-		< 0.05	< 0.05	< 0.05	< 0.05	пс
g-BHC (Lindane)	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Heptachlor	10	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Heptachlor epoxide	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Hexachlorobenzene	10	-		< 0.05	< 0.05	< 0.05	< 0.05	nc

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2 TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP15/0.2	TP15/0.4	TP16/0.2	DS1	RPD_DS1
		EILS	Depth (m)	0.2	0.4	0.2	-	-
	HILs - C	Urban	Туре	Fill	Clay	Fill	Duplicate	-
		Residential	Date	14/09/2016	14/09/2016	14/09/2016	14/09/2016	-
Methoxychlor	400	-		< 0.2	< 0.2	< 0.2	< 0.2	ПС
Toxaphene	30	-		< 1	< 1	< 1	< 1	пс
Aldrin + Dieldrin	10	-		ND	ND	ND	ND	ПС
Endosulfans - Total	340	-		ND	ND	ND	ND	ПС
DDD + DDE + DDT	400	-		ND	ND	0.19	0.3	45%
Scheduled Chemical Wastes	-	-		ND	ND	0.19	0.3	45%

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2 DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS1 = rinsate sampleRS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TS1	RPD_TS1	TP17/0.2	TP18/0.2	DS2
		EILS	Depth (m)	-	-	0.2	0.2	-
	HILs - C	Urban	Туре	Triplicate	-	Fill	Fill	Duplicate
		Residential	Date	14/09/2016	-	14/09/2016	14/09/2016	14/09/2016
4.4'-DDD	-	-		< 0.05	пс	< 0.05	< 0.05	< 0.05
4.4'-DDE	-	-		0.28	38%	0.29	0.26	0.38
4.4'-DDT	-	180		0.06	nc	< 0.05	< 0.05	0.13
a-BHC	-	-		< 0.05	пс	< 0.05	< 0.05	< 0.05
Aldrin	-	-		< 0.05	пс	< 0.05	< 0.05	< 0.05
b-BHC	-	-		< 0.05	nc	< 0.05	< 0.05	< 0.05
Chlordanes - Total	70	-		< 0.1	nc	< 0.1	< 0.1	< 0.1
d-BHC	-	-		< 0.05	nc	< 0.05	< 0.05	< 0.05
Dieldrin	-	-		< 0.05	nc	< 0.05	< 0.05	< 0.05
Endosulfan I	-	-		< 0.05	nc	< 0.05	< 0.05	< 0.05
Endosulfan II	-	-		< 0.05	пс	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-	-		< 0.05	пс	< 0.05	< 0.05	< 0.05
Endrin	20	-		< 0.05	пс	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-	-		< 0.05	nc	< 0.05	< 0.05	< 0.05
Endrin ketone	-	-		< 0.05	nc	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-	-		< 0.05	nc	< 0.05	< 0.05	< 0.05
Heptachlor	10	-		< 0.05	nc	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-	-		< 0.05	nc	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	10	-		< 0.05	nc	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2 TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TS1	RPD_TS1	TP17/0.2	TP18/0.2	DS2
		EILS	Depth (m)	-	-	0.2	0.2	-
	HILs - C	Urban	Туре	Triplicate	-	Fill	Fill	Duplicate
		Residential	Date	14/09/2016	-	14/09/2016	14/09/2016	14/09/2016
Methoxychlor	400	-		< 0.05	ПС	< 0.2	< 0.2	< 0.2
Toxaphene	30	-		< 1	nc	< 1	< 1	< 1
Aldrin + Dieldrin	10	-		ND	nc	ND	ND	ND
Endosulfans - Total	340	-		ND	nc	ND	ND	ND
DDD + DDE + DDT	400	-		0.34	57%	0.29	0.26	0.51
Scheduled Chemical Wastes	-	-		0.34	57%	0.29	0.26	0.51

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2 DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	RPD_DS2	TS2	RPD_TS2	TP19/0.2	RS1
		EILS	Depth (m)	-	-	-	0.2	-
	HILs - C	Urban	Туре	-	Triplicate	-	Fill	Rinsate
		Residential	Date	-	14/09/2016	-	14/09/2016	13/09/2016
4.4'-DDD	-	-		пс	< 0.05	nc	< 0.05	< 0.0001
4.4'-DDE	-	-		38%	0.13	67%	< 0.05	< 0.0001
4.4'-DDT	-	180		ПС	< 0.05	пс	< 0.05	< 0.0001
a-BHC	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
Aldrin	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
b-BHC	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
Chlordanes - Total	70	-		пс	< 0.1	пс	< 0.1	< 0.001
d-BHC	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
Dieldrin	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
Endosulfan I	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
Endosulfan II	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
Endosulfan sulphate	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
Endrin	20	-		пс	< 0.05	пс	< 0.05	< 0.0001
Endrin aldehyde	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
Endrin ketone	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
g-BHC (Lindane)	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
Heptachlor	10	-		пс	< 0.05	пс	< 0.05	< 0.0001
Heptachlor epoxide	-	-		пс	< 0.05	пс	< 0.05	< 0.0001
Hexachlorobenzene	10	-		пс	< 0.05	пс	< 0.05	< 0.0001

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2 TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	RPD_DS2	TS2	RPD_TS2	TP19/0.2	RS1
		EILS	Depth (m)	-	-	-	0.2	-
	HILs - C	Urban	Туре	-	Triplicate	-	Fill	Rinsate
		Residential	Date	-	14/09/2016	-	14/09/2016	13/09/2016
Methoxychlor	400	-		ПС	< 0.05	ПС	< 0.2	< 0.0001
Toxaphene	30	-		пс	< 1	пс	< 1	< 0.01
Aldrin + Dieldrin	10	-		пс	ND	пс	ND	ND
Endosulfans - Total	340	-		пс	ND	пс	ND	ND
DDD + DDE + DDT	400	-		65%	0.13	67%	ND	ND
Scheduled Chemical Wastes	-	-		65%	0.13	67%	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2 DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	RS2		
		EILS	Depth (m)	-		
	HILs - C	Urban	Туре	Rinsate		
		Residential	Date	14/09/2016		
4.4'-DDD	-	-		< 0.0001		
4.4'-DDE	-	-		< 0.0001		
4.4'-DDT	-	180		< 0.0001		
a-BHC	-	-		< 0.0001		
Aldrin	-	-		< 0.0001		
b-BHC	-	-		< 0.0001		
Chlordanes - Total	70	-		< 0.001		
d-BHC	-	-		< 0.0001		
Dieldrin	-	-		< 0.0001		
Endosulfan I	-	-		< 0.0001		
Endosulfan II	-	-		< 0.0001		
Endosulfan sulphate	-	-		< 0.0001		
Endrin	20	-		< 0.0001		
Endrin aldehyde	-	-		< 0.0001		
Endrin ketone	-	-		< 0.0001		
g-BHC (Lindane)	-	-		< 0.0001		
Heptachlor	10	-		< 0.0001		
Heptachlor epoxide	-	-		< 0.0001		
Hexachlorobenzene	10	-		< 0.0001		

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants.

Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values

Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2 TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample
- RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	RS2	
		EILS	Depth (m)	-	
	HILs - C	Urban	Туре	Rinsate	
		Residential	Date 1	4/09/2016	
Methoxychlor	400	-		< 0.0001	
Toxaphene	30	-		< 0.01	
Aldrin + Dieldrin	10	-		ND	
Endosulfans - Total	340	-		ND	
DDD + DDE + DDT	400	-		ND	
Scheduled Chemical Wastes	-	-		ND	

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L.

- = assessment criteria not available

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2

RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit</pre>

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Sample ID	TP1/0.1	TP2/0.1	TP3/0.05	TP4/0.05	TP5/0.2
		Depth (m)	0.1	0.1	0.05	0.05	0.2
	HILS - C	Туре	Topsoil	Fill	Topsoil	Topsoil	Fill
		Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Aroclor 1016	-			< 0.5			< 0.5
Aroclor 1232	-			< 0.5			< 0.5
Aroclor 1242	-			< 0.5			< 0.5
Aroclor 1248	-			< 0.5			< 0.5
Aroclor 1254	-			< 0.5			< 0.5
Aroclor 1260	-			< 0.5			< 0.5
Total PCBs	1			< 0.5			< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Sample ID	TP6/0.1	TP7/0.1	TP8/0.15	TP9/0.1	TP9/0.3
		Depth (m)	0.1	0.1	0.15	0.1	0.3
	HILS - C	Туре	Fill	Fill	Fill	Fill	Clay
		Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Aroclor 1016	-		< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor 1232	-		< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor 1242	-		< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor 1248	-		< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor 1254	-		< 0.5	< 0.5	< 0.5	< 0.5	
Aroclor 1260	-		< 0.5	< 0.5	< 0.5	< 0.5	
Total PCBs	1		< 0.5	< 0.5	< 0.5	< 0.5	

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Sample ID	TP10/0.2	TP11/0.1	TP12/0.2	TP13/0.1	TP14/0.25
		Depth (m)	0.2	0.1	0.2	0.1	0.25
	HILS - C	Туре	Fill	Fill	Fill	Fill	Fill
		Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Aroclor 1016	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor 1232	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor 1242	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor 1248	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor 1254	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor 1260	-		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total PCBs	1		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Sample ID	TP15/0.2	TP15/0.4	TP16/0.2	DS1	RPD_DS1
		Depth (m)	0.2	0.4	0.2	-	-
	HILs - C	Туре	Fill	Clay	Fill	Duplicate	-
		Date	14/09/2016	14/09/2016	14/09/2016	14/09/2016	-
Aroclor 1016	-		< 0.5		< 0.5	< 0.5	пс
Aroclor 1232	-		< 0.5		< 0.5	< 0.5	пс
Aroclor 1242	-		< 0.5		< 0.5	< 0.5	пс
Aroclor 1248	-		< 0.5		< 0.5	< 0.5	пс
Aroclor 1254	-		< 0.5		< 0.5	< 0.5	пс
Aroclor 1260	-		< 0.5		< 0.5	< 0.5	пс
Total PCBs	1		< 0.5		< 0.5	< 0.5	пс

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Sample ID	TS1	RPD_TS1	TP17/0.2	TP18/0.2	DS2
		Depth (m)	-	-	0.2	0.2	-
	HILS - C	Туре	Triplicate	-	Fill	Fill	Duplicate
		Date	14/09/2016	-	14/09/2016	14/09/2016	14/09/2016
Aroclor 1016	-		< 0.1	пс	< 0.5	< 0.5	< 0.5
Aroclor 1232	-		< 0.1	nc	< 0.5	< 0.5	< 0.5
Aroclor 1242	-		< 0.1	nc	< 0.5	< 0.5	< 0.5
Aroclor 1248	-		< 0.1	nc	< 0.5	< 0.5	< 0.5
Aroclor 1254	-		< 0.1	nc	< 0.5	< 0.5	< 0.5
Aroclor 1260	-		< 0.1	nc	< 0.5	< 0.5	< 0.5
Total PCBs	1		< 0.1	пс	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Sample ID	RPD_DS2	TS2	RPD_TS2	TP19/0.2	RS1
		Depth (m)	-	-	-	0.2	-
	HILS - C	Туре	-	Triplicate	-	Fill	Rinsate
		Date	-	14/09/2016	-	14/09/2016	13/09/2016
Aroclor 1016	-		пс	< 0.1	пс	< 0.5	
Aroclor 1232	-		пс	< 0.1	пс	< 0.5	
Aroclor 1242	-		пс	< 0.1	пс	< 0.5	
Aroclor 1248	-		пс	< 0.1	пс	< 0.5	
Aroclor 1254	-		пс	< 0.1	пс	< 0.5	
Aroclor 1260	-		пс	< 0.1	пс	< 0.5	
Total PCBs	1		пс	< 0.1	nc	< 0.5	

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Sample ID RS2
		Depth (m) -
	HILs - C	Type Rinsate
		Date 14/09/2016
Aroclor 1016	-	
Aroclor 1232	-	
Aroclor 1242	-	
Aroclor 1248		
Aroclor 1254		
Aroclor 1260		
Total PCBs	1	

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg

Rinsate concentrations in µg/L.

- = assessment criteria not available

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample
- RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	0 H + 4	<u> </u>	a					
	Criteria 1	Criteria 2	Sample ID	TP1/0.1	TP2/0.1	TP3/0.05	TP4/0.05	TP5/0.2
		EILS	Depth (m)	0.1	0.1	0.05	0.05	0.2
	HILs - C	Urban	Туре	Topsoil	Fill	Topsoil	Topsoil	Fill
		Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Arsenic	300	100		5	15	11	18	10
Cadmium	90	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	300 ¹	4102		20	47	110	110	76
Copper	17,000	110		24	40	21	24	11
Lead	600	1,300		50	57	42	44	32
Mercury	80	-		0.11	0.3	0.4	0.43	0.5
Nickel	1,200	190		< 5	< 5	< 5	< 5	< 5
Zinc	30,000	300		94	75	49	32	23

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available

¹Guideline for Cromium (VI) used conservatively.

 $^2\mbox{Guideline}$ for Chromium (III) used conservatively.

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2PS1 = ripsate sample

RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP6/0.1	TP7/0.1	TP8/0.15	TP9/0.1	TP9/0.3
		EILS	Depth (m)	0.1	0.1	0.15	0.1	0.3
	HILs - C	Urban	Туре	Fill	Fill	Fill	Fill	Clay
		Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Arsenic	300	100		14	3.9	6	35	9.8
Cadmium	90	-		< 0.4	< 0.4	< 0.4	2.6	< 0.4
Chromium	3001	410 ²		67	15	11	44	16
Copper	17,000	110		19	20	11	80	10
Lead	600	1,300		51	31	20	140	22
Mercury	80	-		0.4	0.1	< 0.05	0.69	< 0.05
Nickel	1,200	190		< 5	< 5	< 5	26	< 5
Zinc	30,000	300		61	79	34	180	21

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available

¹Guideline for Cromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2 RS1 = rinsate sample
 - inisale sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP10/0.2	TP11/0.1	TP12/0.2	TP13/0.1	TP14/0.25
		EILS	Depth (m)	0.2	0.1	0.2	0.1	0.25
	HILs - C	Urban	Туре	Fill	Fill	Fill	Fill	Fill
		Residential	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Arsenic	300	100		9.1	15	14	5.2	12
Cadmium	90	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	3001	4102		30	37	32	29	39
Copper	17,000	110		23	20	22	34	14
Lead	600	1,300		46	87	95	37	22
Mercury	80	-		0.1	0.1	0.14	0.16	0.25
Nickel	1,200	190		< 5	< 5	< 5	< 5	< 5
Zinc	30,000	300		59	60	110	55	21

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available

¹Guideline for Cromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP15/0.2	TP15/0.4	TP16/0.2	DS1	RPD_DS1
		EILS	Depth (m)	0.2	0.4	0.2	-	-
	HILs - C	Urban	Туре	Fill	Clay	Fill	Duplicate	-
		Residential	Date	14/09/2016	14/09/2016	14/09/2016	14/09/2016	-
Arsenic	300	100		18	11	13	15	14%
Cadmium	90	-		< 0.4	< 0.4	< 0.4	< 0.4	пс
Chromium	300 ¹	410 ²		48	31	38	45	17%
Copper	17,000	110		16	< 5	8	13	48%
Lead	600	1,300		31	17	31	38	20%
Mercury	80	-		0.26	< 0.05	0.06	0.07	15%
Nickel	1,200	190		< 5	< 5	< 5	< 5	пс
Zinc	30,000	300		40	5.8	27	36	29%

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available

¹Guideline for Cromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TS1	RPD_TS1	TP17/0.2	TP18/0.2	DS2
		EILS	Depth (m)	-	-	0.2	0.2	-
	HILs - C	Urban	Туре	Triplicate	-	Fill	Fill	Duplicate
		Residential	Date	14/09/2016	-	14/09/2016	14/09/2016	14/09/2016
Arsenic	300	100		4.5	97%	16	12	13
Cadmium	90	-		< 0.4	nc	0.4	< 0.4	< 0.4
Chromium	3001	410 ²		33	14%	59	32	37
Copper	17,000	110		8.3	4%	18	12	12
Lead	600	1,300		26	18%	53	30	41
Mercury	80	-		< 0.1	пс	0.13	0.12	0.16
Nickel	1,200	190		< 5	nc	< 5	< 5	< 5
Zinc	30,000	300		33	20%	72	34	36

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available

¹Guideline for Cromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2

RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	RPD_DS2	TS2	RPD_TS2	TP19/0.2	RS1
		EILS	Depth (m)	-	-	-	0.2	-
	HILs - C	Urban	Туре	-	Triplicate	-	Fill	Rinsate
		Residential	Date	-	14/09/2016	-	14/09/2016	13/09/2016
Arsenic	300	100		8%	8.6	33%	11	< 0.001
Cadmium	90	-		пс	< 0.4	пс	< 0.4	< 0.0002
Chromium	300 ¹	41O ²		14%	39	20%	20	< 0.001
Copper	17,000	110		0%	14	15%	18	< 0.001
Lead	600	1,300		31%	34	13%	40	< 0.001
Mercury	80	-		29%	< 0.1	nc	0.05	< 0.0001
Nickel	1,200	190		nc	< 5	nc	< 5	< 0.001
Zinc	30,000	300		6%	52	42%	70	< 0.005

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available

¹Guideline for Cromium (VI) used conservatively.

²Guideline for Chromium (III) used conservatively.

- DS1 = duplicate of TP16/0.2
- TS1 = triplicate of TP16/0.2
- DS2 = duplicate of TP18/0.2
- TS2 = triplicate of TP18/0.2
- RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID RS2	2
		EILS	Depth (m) -	
	HILs - C	Urban	Type Rinsa	te
		Residential	Date 14/09/2	016
Arsenic	300	100	< 0.00	21
Cadmium	90	-	< 0.00	02
Chromium	300 ¹	4102	< 0.00	21
Copper	17,000	110	< 0.0	21
Lead	600	1,300	< 0.00	21
Mercury	80	-	< 0.00	01
Nickel	1,200	190	< 0.00	21
Zinc	30,000	300	< 0.0	05

Notes:

Criteria 1 = NEPC (1999) Amended, 'C' Recreational Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, site specific values Total concentrations in mg/kg Rinsate concentrations in µg/L. - = assessment criteria not available 'Guideline for Cromium (VI) used conservatively. ²Guideline for Chromium (III) used conservatively.

DS1 = duplicate of TP16/0.2

TS1 = triplicate of TP16/0.2

DS2 = duplicate of TP18/0.2

TS2 = triplicate of TP18/0.2

RS1 = rinsate sample

RS2 = rinsate sample

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP1 ^g	TP2 ^g	TP3ª	TP4ª	TP5⁰
	Asbestos	Asbestos	Depth (m)	0.0-0.1	0.0-0.3	0.0-0.05	0.0-0.05	0.0-0.25
	HSLs - Surface	HSLs - C	Туре	Topsoil	Fill	Topsoil	Topsoil	Fill
	(Top 10 cm)	(Below 10 cm)	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Approximate Sample Volume (L)	-	-		10	10	10	10	10
Approximate Sample Density (g/L)	-	-		1,500	1,500	1,500	1,500	1,500
Approximate Sample Mass (g)	-	-		15,000	15,000	15,000	15,000	15,000
Mass ACM (g)	-	-		ND	ND	ND	ND	ND
Mass Asbestos in ACM (g)	-	-		ND	ND	ND	ND	ND
Asbestos from ACM in Soil (%w/w)	ND	0.02		ND	ND	ND	ND	ND
Mass FA (g)	-	-						
Mass Asbestos in FA (g)	-	-						
Mass AF (g)	-	-						
Mass Asbestos in AF (g)	-	-						
Mass Asbestos in FA & AF (g)	-	-						
Asbestos from FA & AF in Soil (%w/w	ND	0.001						

Notes:

Criteria 1 = NEPC (1999) Amended, Health Screening Levels for asbestos contamination in soil.

Criteria 2 = NEPC (1999) Amended, 'C' Recreational Health Screening Levels for asbestos contamination in soil.

- = assessment criteria not available

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria

ACM = Bonded Asbestos Containing Material

FA = Fibrous Asbestos

AF = Asbestos Fines

Analysis completed by visual assessment in accordance with the WA DOH (2009) Gravimetric Method.

Analysis completed by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP6 ^g	TP7ª	TP7/0.1-0.3 ¹	TP8ª	TP99
	Asbestos	Asbestos	Depth (m)	0.0-0.2	0.0-0.4	0.1-0.3	0.0-0.15	0.0-0.2
	HSLs - Surface	HSLs - C	Туре	Fill	Fill	Fill	Fill	Fill
	(Top 10 cm)	(Below 10 cm)	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Approximate Sample Volume (L)	-	-		10	10		10	10
Approximate Sample Density (g/L)	-	-		1,500	1,500		1,500	1,500
Approximate Sample Mass (g)	-	-		15,000	15,000	770	15,000	15,000
Mass ACM (a)				ND	ND	ND	ND	ND
Mass Achostos in ACM (a)	-	-		ND	ND	ND	ND	ND
Achostos from ACM in Soil (9(w/w)		-		ND	ND	ND	ND	ND
Aspesios Itolii Acivi III Soli (70w/w)	ND	0.02		ND	ND	ND	ND	ND
Mass FA (g)	-	-				ND		
Mass Asbestos in FA (g)	-	-				ND		
Mass AF (g)	-	-				ND		
Mass Asbestos in AF (g)	-	-				ND		
Mass Asbestos in FA & AF (g)	-	-				ND		
Asbestos from FA & AF in Soil (%w/w	ND	0.001				ND		

Notes:

Criteria 1 = NEPC (1999) Amended, Health Screening Levels for asbestos contamination in soil.

Criteria 2 = NEPC (1999) Amended, 'C' Recreational Health Screening Levels for asbestos contamination in soil.

- = assessment criteria not available

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria

ACM = Bonded Asbestos Containing Material

FA = Fibrous Asbestos

AF = Asbestos Fines

Analysis completed by visual assessment in accordance with the WA DOH (2009) Gravimetric Method.

Analysis completed by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP9/0.1-0.3 ¹	TP10 ^g	TP11g	TP12 ^g	TP139
	Asbestos	Asbestos	Depth (m)	0.1-0.3	0.0-0.3	0.0-0.25	0.0-0.4	0.0-0.3
	HSLs - Surface	HSLs - C	Туре	Fill	Fill	Fill	Fill	Fill
	(Top 10 cm)	(Below 10 cm)	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Approximate Sample Volume (L)	-	-			10	10	10	10
Approximate Sample Density (g/L)	-	-			1,500	1,500	1,500	1,500
Approximate Sample Mass (g)		-		1,077	15,000	15,000	15,000	15,000
Mass ACM (g)	-	-		ND	ND	ND	ND	ND
Mass Asbestos in ACM (g)	-	-		ND	ND	ND	ND	ND
Asbestos from ACM in Soil (%w/w)	ND	0.02		ND	ND	ND	ND	ND
Mass FA (g)	-	-		ND				
Mass Asbestos in FA (g)	-	-		ND				
Mass AF (g)	-	-		ND				
Mass Asbestos in AF (g)	-	-		ND				
Mass Asbestos in FA & AF (g)	-	-		ND				
Asbestos from FA & AF in Soil (%w/w	ND	0.001		ND				

Notes:

Criteria 1 = NEPC (1999) Amended, Health Screening Levels for asbestos contamination in soil.

Criteria 2 = NEPC (1999) Amended, 'C' Recreational Health Screening Levels for asbestos contamination in soil.

- = assessment criteria not available

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria

ACM = Bonded Asbestos Containing Material

FA = Fibrous Asbestos

AF = Asbestos Fines

Analysis completed by visual assessment in accordance with the WA DOH (2009) Gravimetric Method.

Analysis completed by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

Table 6 : Summary of Soil Analytical Data - AsbestosPhase II Environmental Site AssessmentProject No.: 1601086

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP14 ^g	TP15 ^g	TP169	TP16/0.1-0.3 ¹	TP179
	Asbestos	Asbestos	Depth (m)	0.0-0.25	0.0-0.3	0.0-0.2	0.1-0.3	0.0-0.3
	HSLs - Surface	HSLs - C	Туре	Fill	Fill	Fill	Fill	Fill
	(Top 10 cm)	(Below 10 cm)	Date	13/09/2016	13/09/2016	13/09/2016	13/09/2016	13/09/2016
Approximate Sample Volume (L)	-	-		10	10	10		10
Approximate Sample Density (g/L)	-	-		1,500	1,500	1,500		1,500
Approximate Sample Mass (g)	-	-		15,000	15,000	15,000	1,042	15,000
Mass ACM (g)	-	-		ND	ND	ND	ND	ND
Mass Asbestos in ACM (g)	-	-		ND	ND	ND	ND	ND
Asbestos from ACM in Soil (%w/w)	ND	0.02		ND	ND	ND	ND	ND
Mass FA (g)	-	-					ND	
Mass Asbestos in FA (g)	-	-					ND	
Mass AF (g)	-	-					ND	
Mass Asbestos in AF (g)	-	-					ND	
Mass Asbestos in FA & AF (g)	-	-					ND	
Asbestos from FA & AF in Soil (%w/w	ND	0.001					ND	

Notes:

Criteria 1 = NEPC (1999) Amended, Health Screening Levels for asbestos contamination in soil.

Criteria 2 = NEPC (1999) Amended, 'C' Recreational Health Screening Levels for asbestos contamination in soil.

- = assessment criteria not available

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria

ACM = Bonded Asbestos Containing Material

FA = Fibrous Asbestos

AF = Asbestos Fines

Analysis completed by visual assessment in accordance with the WA DOH (2009) Gravimetric Method.

Analysis completed by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

Table 6 : Summary of Soil Analytical Data - AsbestosPhase II Environmental Site AssessmentProject No.: 1601086

205a Culloden Road Macquarie Park NSW 2109

	Criteria 1	Criteria 2	Sample ID	TP189	TP19 ^g	
	Asbestos	Asbestos	Depth (m)	0.0-0.3	0.0-0.15	
	HSLs - Surface	HSLs - C	Туре	Fill	Fill	
	(Top 10 cm)	(Below 10 cm)	Date	13/09/2016	13/09/2016	
Approximate Sample Volume (L)	-	-		10	10	
Approximate Sample Density (g/L)	-	-		1,500	1,500	
Approximate Sample Mass (g)	-	-		15,000	15,000	
Mass ACM (g)	-	-		ND	ND	
Mass Asbestos in ACM (g)	-	-		ND	ND	
Asbestos from ACM in Soil (%w/w)	ND	0.02		ND	ND	
Mass FA (g)	-	-				
Mass Asbestos in FA (g)	-	-				
Mass AF (g)	-	-				
Mass Asbestos in AF (g)	-	-				
Mass Asbestos in FA & AF (g)	-	-				
Asbestos from FA & AF in Soil (%w/w	ND	0.001				

Notes:

Criteria 1 = NEPC (1999) Amended, Health Screening Levels for asbestos contamination in soil.

Criteria 2 = NEPC (1999) Amended, 'C' Recreational Health Screening Levels for asbestos contamination in soil.

- = assessment criteria not available

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Bold/red indicates exceedance of assessment criteria

ACM = Bonded Asbestos Containing Material

FA = Fibrous Asbestos

AF = Asbestos Fines

Analysis completed by visual assessment in accordance with the WA DOH (2009) Gravimetric Method.

¹Analysis completed by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

ATTACHMENT A

Photographic Plate 1: Brick and metal clad building north of site.

Photographic Plate 2: Brick and metal clad building north of site.

Photographic Plate 3: Brick and metal clad building northwest of site.

Photographic Plate 4: Mulch fill and sidewalk, northwest of site.

Photographic Plate 5: Looking southwest across site towards University in background.

Photographic Plate 6: Looking southwest across site towards University in background.

Photographic Plate 7: Looking south from north eastern corner of site

Photographic Plate 8: Fill with concrete and masonry blocks in treed area, near centre of site.

Photographic Plate 9: Looking at treed area in northern corner of site from centre of site.

Photographic Plate 10: Fill in treed area, northern corner of site.

Photographic Plate 11: Looking southeast from the southern site boundary.

ATTACHMENT B

All Groundwater All Groundwater Map

All data times are Eastern Standard Time

Map Info

Scale = 1 : 3385

ATTACHMENT C

Job No 11050404

Caller Details

Contact:	Mr Aidan McKenzie	Caller Id:	1565424	Phone:	0299791722
Company:	Geo-Logix	Mobile:	Not Supplied	Fax:	Not Supplied
Address:	Unit 2309 4 Daydream Street	Email:	amckenzie@geo-log	jix.com.au	I
	Warriewood NSW 2102				

Dig Site and Enquiry Details

WARNING: The map below only displays the location of the proposed dig site and The area highlighted has been used only to identify the participating asset owners

Notes/Description of Works: Not Supplied

g site and does not display t owners, who will send info	any asset owners' pi ormation to you dire	pe or cables. ctly.	
User Reference:	1601086		
Working on Behalf of:			
Private			
Enquiry Date:	Start Date:	End Date:	
03/08/2016	06/08/2016	06/09/2016	
Address:			
Culloden Road			
Marsfield NSW 2122			
Job Purpose:	Excavation		
Onsite Activity:	Vertical Boring		
Location of Workplace	Private Property		
Location in Road:	Not Supplied		

- Check that the location of the dig site is correct. If not you must submit a new enquiry.
- Should the scope of works change, or plan validity dates expire, you must submit a new enquiry.
- Do NOT dig without plans. Safe excavation is your responsibility. If you do not understand the plans or how to proceed safely, please contact the relevant asset owners.

Your Responsibilities and Duty of Care

- If plans are not received within 2 working days, contact the asset owners directly & quote their Sequence No.
- ALWAYS perform an onsite inspection for the presence of assets. Should you require an onsite location, contact the asset owners directly. Please remember, plans do not detail the exact location of assets.
- Pothole to establish the exact location of all underground assets using a hand shovel, before using heavy machinery.
- Ensure you adhere to any State legislative requirements regarding Duty of Care and safe digging requirements.
- If you damage an underground asset you MUST advise the asset owner immediately.
- By using this service, you agree to Privacy Policy and the terms and disclaimers set out at www.1100.com.au
- For more information on safe excavation practices, visit www.1100.com.au

Asset Owner Details

The assets owners listed below have been requested to contact you with information about their asset locations within 2 working days. Additional time should be allowed for information issued by post. It is your responsibility to identify the presence of any underground

assets in and around your proposed dig site. Please be aware, that not all asset owners are registered with the Dial Before You Dig service, so it is **your responsibility** to identify and contact any asset owners not listed here directly.

- ** Asset owners highlighted by asterisks ** require that you visit their offices to collect plans. # Asset owners highlighted with a hash require that you call them to discuss your enquiry or to obtain plans.
- Seq. No. Authority Name Status Phone

54696766	AARNet Pty Ltd, Nsw	1300275662	NOTIFIED
54696761	Ausgrid	0249510899	NOTIFIED
54696758	City Of Ryde	0299528130	NOTIFIED
54696764	Jemena Gas North	1300880906	NOTIFIED
54696759	Nextgen, NCC - NSW	1800032532	NOTIFIED
54696763	Optus and/or Uecomm, Nsw	1800505777	NOTIFIED
54696760	PIPE Networks, Nsw	1800201100	NOTIFIED
54696765	Sydney Water	132092	NOTIFIED
54696762	Telstra NSW, Central	1800653935	NOTIFIED

END OF UTILITIES LIST

AARNet Sequence Number: 54696766 Address:Culloden Road, Marsfield, NSW, 2122

Cadastre

Exact positions of any assets shown on this map report should be confirmed on site.

for any reason.

AARNet Sequence Number: 54696766 Address:Culloden Road, Marsfield, NSW, 2122

Cadastre

warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaim all responsibility and all lability (including without limitation liability in negligence) for all expenses, losses, damages (including indirect or consequential damage) and costs which may be incurred as a result of the data being inaccurate or incomplete in any way and for any reason.

Exact positions of any assets shown on this map report should be confirmed on site.

Exact positions of any assets shown on this map report should be confirmed on site.

Response Cover Letter

Date: 03/08/2016

PIPE Networks

Level 17, 127 Creek St Brisbane QLD 4000 Phone: +61 732339895 Fax: +61 732339880

To: Mr Aidan McKenzie - Customer ID: 1565424 Geo-Logix - Mr Aidan McKenzie Unit 2309 4 Daydream Street Warriewood NSW 2102

Email: amckenzie@geo-logix.com.au Phone: 0299791722 Fax: Not Supplied Mobile: Not Supplied

Dear Mr Aidan McKenzie

The following is our response to your Dial Before You Dig enquiry.

Assets Affected: T	elstra
--------------------	--------

Sequence Number: 54696760

Location:

Culloden Road Marsfield NSW 2122

Commencement Date: 06/08/2016

Please read over the attached documents for more information about your enquiry.

DISCLAIMER: No responsibility/liability is taken by PIPE Networks for any inaccuracy, error, omission or action based on the information supplied in this correspondence

152 00000000 00000000 0000000000 00000000		_
Sequence Number: 54696759	Date: 03/08/2016	
DISCLAIMER: THIS DRAWING SHOULD NOT BE SCALED TO LOCATE CABLES. NO WARRANTY IS GIVEN THAT THE INFORMATION IS ACCURATE OR COMPLETE. IF YOU REQUIRE INFORMATION REGARDING LOCATING THE CABLE PLEASE CALL NEXTGEN. THIS DOCUMENT HAS BEEN PREPARED SOLELY FOR DIAL BEFORE YOU DIG USE. THIS PLAN CONTAINS COMMERCIALLY SENSITIVE INFORMATION AND IS TO BE TREATED ACCORDINGLY. NO SUCH INFORMATION IS TO BE PASSED ONTO OTHER PARTIES WITHOUT WRITTEN CONSENT FROM NEXTGEN PTY LTD.	Point Cable Image: Constraint of the state of the s	

4 Sequence Number: 54696759	Date: 03/08/2016	
DISCLAIMER: THIS DRAWING SHOULD NOT BE SCALED TO LOCATE CABLES. NO WARRANTY IS GIVEN THAT THE INFORMATION IS ACCURATE OR COMPLETE. IF YOU REQUIRE INFORMATION REGARDING LOCATING THE CABLE PLEASE CALL NEXTGEN. THIS DOCUMENT HAS BEEN PREPARED SOLELY FOR DIAL BEFORE YOU DIG USE. THIS PLAN CONTAINS COMMERCIALLY SENSITIVE INFORMATION AND IS TO BE TREATED ACCORDINGLY. NO SUCH INFORMATION IS TO BE PASSED ONTO OTHER PARTIES WITHOUT WRITTEN CONSENT FROM NEXTGEN PTY LT.		Digsite Assets Point Cable Line 3rd Party Duct Area Marker Post

WARNING: This document is confidential and may also be privileged. Confidentiality nor privilege is not waived or destroyed by virtue of it being transmitted to an incorrect addressee. Unauthorised use of the contents is therefore strictly prohibited. Any information contained in this document that has been extracted from our records is believed to be accurate, but no responsibility is assumed for any error or omission. Optus Plans and information supplied are valid for 30 days from the date of issue. If this timeline has elapsed please raise a new enquiry.

Sequence Number: 54696763

For all Optus DBYD plan enquiries – Email: <u>Fibre.Locations@optus.net.au</u> For urgent onsite assistance contact 1800 505 777 Optus Limited ACN 052 833 208 Date Generated: 03/08/2016

			×	and the second s
DBYD Address: n/a Culloden Road Marsfield NSW 2122	DBYD Job No: 11050404 DBYD Sequence No: 54696765	Copyright Reserved Sydney Water 2016 No warranty is given that the information shown is complete or accurate. SYDNEY WATER CORPORATION	Scale: 1:1500 Date of Production: 03/08/2016	Plan 1 of 1

Telstra	For all Telstra DBYD plan enquiries -	Sequence Number: 54696762
U eisti u	For urgent onsite contact only - ph 1800 653 935 (bus hrs)	CAUTION: Fibre optic and/ or major network present
TELSTRA CORPORATION LIMITED A.C.N. 051 775 556		in plot area. Flease read the Duty of Care and
Generated On 03/08/2016 13:35:07		any assistance.

The above plan must be viewed in conjunction with the Mains Cable Plan on the following page

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

20111	100111	00111	00111	4011	2011	0111	/		
							/	/	
_									

Telstra	For all Telstra DBYD plan enquiries -	Sequence Number: 54696762		
	For urgent onsite contact only - ph 1800 653 935 (bus hrs)	CAUTION: Fibre optic and/ or major network present		
TELSTRA CORPORATION LIMITED A.C.N. 051 775 556		antest Teletre Dien Comisse should you remuire		
Gene	erated On 03/08/2016 13:35:15	any assistance.		

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

LEGEND

For more info contact a Telstra Accredited Locater or Telstra Plan Services 1800 653 935

One 50mm PVC conduit (P50) containing a 50-pair and a 10-pair cable between two 6-pits, 20.0m apart, with a direct buried 30-pair cable along the same route.

Two separate conduit runs between two footway access chambers (manholes) 245m apart. A nest of four 100mm PVC conduits (P100) containing assorted cables in three ducts (one being empty) and one empty 100mm concrete duct (C100) along the same route.

WARNING: Telstra plans and location information conform to Quality Level 'D' of the Australian Standard AS 5488 - Classification of Subsurface Utility Information. As such, Telstra supplied location information is indicative only. Spatial accuracy is not applicable to Quality Level D. Refer to AS 5488 for further details. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans. FURTHER ON SITE INVESTIGATION IS REQUIRED TO VALIDATE THE EXACT LOCATION OF TELSTRA PLANT PRIOR TO COMMENCING CONSTRUCTION WORK. A plant location service is an essential part of the process to validate the exact location of Telstra assets and to ensure the asset is protected during construction works. The exact position of Telstra assets can only be validated by physically exposing it. Telstra will seek compensation for damages caused to its property and losses caused to Telstra and its customers.

ATTACHMENT D

Test Pit Logs Phase II Environmental Site Assesment Project No.: 1601086

205a Culloden Road, Macquarie Park NSW 2109

Location	Depth	Description
TP1	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp, with woodchips.
	0.1 - 0.2	Gravelly Clay (CL) - moderate brown (5YR4/4), 60% clay, 10% sand, 30% gravel, damp, very stiff, low plasticity.
TP2	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
	0.1 - 0.3	Fill - moderate brown (5YR3/4), 20% clay, 30% silt, 40% sand, 10% gravel, damp, moderately compacted.
	0.3 - 0.4	Gravelly Clay (CL) - moderate brown (5YR4/4), 70% clay, 10% sand, 20% gravel, damp, very stiff, low plasticity.
	0 - 0.05	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
TP3	0.05 - 0.4	Lean Clay (CL) - moderate brown (5YR4/4), 80% clay, 20% sand, damp, firm, low plasticity.
	0 - 0.05	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
TP4	0.05 - 0.4	Lean Clay (CL) - moderate brown (5YR4/4), 80% clay, 20% sand, damp, firm, low plasticity.
	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
TP5	0.1 - 0.25	Fill - dark yellowish orange (10YR6/6), 40% silt, 30% sand, 30% gravel, damp, moderately compacted.
	0.25 - 0.4	Lean Clay (CL) - light brown (5YR5/6), 80% clay, 20% sand, damp, very stiff, low plasticity.
тре	0 - 0.2	Lean Clay (CL) - moderate brown (5YR3/4), 85% clay, 10% sand, 5% gravel, damp, soft, low plasticity.
110	0.2 - 0.4	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff, low plasticity.
	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp, with woodchips.
TP7	0.1 - 0.4	Fill - dark reddish brown (10R3/4), 10% clay, 20% silt, 60% sand, 10% gravel, damp, poorly compacted.
	0.4 - 0.7	Lean Clay (CL) - moderate brown (5YR4/4), 90% clay, 10% sand, damp, very stiff, low plasticity, with sandstone fragments.
TP8	0 - 0.15	Fill - dark reddish brown (10R3/4), 70% silt, 30% sand, damp, moderately compacted.
	0.15 - 0.3	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff, low plasticity.
	0 - 0.05	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
TP9	0.05 - 0.2	Fill - moderate brown (5YR4/4), 40% clay, 30% silt, 20% sand, 10% gravel, damp, moderately compacted, with pieces of chipboard.
	0.2 - 0.5	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff, low plasticity.
TP10	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
	0.1 - 0.3	Fill - moderate brown (5YR4/4), 40% clay, 30% silt, 20% sand, 10% gravel, damp, moderately compacted.
	0.3 - 0.5	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff, low plasticity.

Test Pit Logs Phase II Environmental Site Assesment Project No.: 1601086

205a Culloden Road, Macquarie Park NSW 2109

Location	Depth	Description
TP11	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
	0.1 - 0.25	Fill - moderate brown (5YR4/4), 40% clay, 30% silt, 20% sand, 10% gravel, damp,
		moderately compacted.
	0.25 - 0.5	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff,
	0.01	IOW plasticity.
TP12	0 - 0.1	Fill moderate brown (5YR3/4), 80% slit, 20% sand, damp.
	0.1 - 0.4	moderately compacted with chipboard fragments.
	0.4 - 0.5	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff,
		low plasticity.
	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
	0.1 - 0.3	Fill - moderate brown (5YR4/4), 40% clay, 30% silt, 20% sand, 10% gravel, damp,
TP13	0.0.05	moderately compacted with chipboard tragments.
	0.3 - 0.5	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff, low plasticity.
	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
	0.1 - 0.25	Fill - moderate brown (5YR4/4), 20% clay, 60% silt, 10% sand, 10% gravel, damp,
TP14		moderately compacted.
	0.25 - 0.4	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff,
	0.01	low plasticity.
	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
TP15	0.1 - 0.3	FIII - moderate brown (51 R4/4), 20% clay, 50% slit, 20% sand, 10% gravel, damp, moderately compacted
	0.3 - 0.4	Lean Clay (CL) - dark vellowish orange (10YR6/6) 90% clay 10% sand damp stiff
		low plasticity.
	0 - 0.05	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
	0.05 - 0.2	Fill - moderate brown (5YR4/4), 40% clay, 40% silt,10% sand, 10% gravel, damp,
TP16		moderately compacted.
	0.2 - 0.4	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff, low plasticity
TP17	0 - 0 15	Tonsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp with woodchips
	0.15 - 0.3	Fill - light brown (5YR6/4), 70% clay, 20% sand, 10% gravel, damp, moderately
		compacted.
	0.3 - 0.5	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff,
		low plasticity.
	0 - 0.05	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp with woodchips.
TP18	0.15 - 0.3	Fill - moderate brown (5YR4/4), 60% clay, 30% sand, 10% gravel, damp, moderately
	03-05	Compacted.
	0.3 - 0.5	low plasticity.
	0 - 0.15	Fill - moderate brown (5YR4/4), 60% clay, 30% sand, 10% gravel, damp, moderately
TP19		compacted.
	0.15 - 0.5	Lean Clay (CL) - dark yellowish orange (10YR6/6), 85% clay, 15% sand, damp, stiff,
		low plasticity.

Test Pit Logs Phase II Environmental Site Assesment Project No.: 1601086 205a Culloden Road, Macquarie Park NSW 2109

Location	Depth	Description
TP11/N	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
	0.1 - 0.25	Fill - moderate brown (5YR4/4), 40% clay, 30% silt, 20% sand, 10% gravel, damp,
		moderately compacted.
	0.25 - 0.5	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff,
		low plasticity.
TP11/E	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
	0.1 - 0.25	Fill - moderate brown (5YR4/4), 40% clay, 30% silt, 20% sand, 10% gravel, damp,
		moderately compacted.
	0.25 - 0.5	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff,
		low plasticity.
TP11/S	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
	0.1 - 0.25	Fill - moderate brown (5YR4/4), 40% clay, 30% silt, 20% sand, 10% gravel, damp,
		moderately compacted.
	0.25 - 0.5	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff,
		low plasticity.
TP11/W	0 - 0.1	Topsoil - moderate brown (5YR3/4), 80% silt, 20% sand, damp.
	0.1 - 0.25	Fill - moderate brown (5YR4/4), 40% clay, 30% silt, 20% sand, 10% gravel, damp,
		moderately compacted.
	0.25 - 0.5	Lean Clay (CL) - dark yellowish orange (10YR6/6), 90% clay, 10% sand, damp, stiff,
		low plasticity.
ATTACHMENT E

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Ted Lilly

Report Project name Project ID Received Date

515897-S MACQUARIE UNIVERSITY 1601086 Sep 15, 2016

Client Sample ID			TP1/0 1	TP2/0 1	TP3/0.05	TP4/0.05
Sample Matrix			Soil	Soil	Soil	Soil
			516 Set 4669	516 Set 4660	546 Set 4670	546 Set 4674
			310-3014000	310-3014009	310-3014070	310-3014071
Date Sampled			Sep 13, 2016	Sep 13, 2016	Sep 13, 2016	Sep 13, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	-	< 20	-	-
TRH C10-C14	20	mg/kg	-	< 20	-	-
TRH C15-C28	50	mg/kg	-	< 50	-	-
TRH C29-C36	50	mg/kg	-	< 50	-	-
TRH C10-36 (Total)	50	mg/kg	-	< 50	-	-
BTEX						
Benzene	0.1	mg/kg	-	< 0.1	-	-
Toluene	0.1	mg/kg	-	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	-
o-Xylene	0.1	mg/kg	-	< 0.1	-	-
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	-	68	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	< 50	-	-
TRH C6-C10	20	mg/kg	-	< 20	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	< 20	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	-
Acenaphthene	0.5	mg/kg	-	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	-
Anthracene	0.5	mg/kg	-	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	-
Chrysene	0.5	mg/kg	-	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	-
Fluoranthene	0.5	mg/kg	-	< 0.5	-	-
Fluorene	0.5	mg/kg	-	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	-

Client Sample ID			TP1/0 1	TP2/0 1	TP2/0.05	TD4/0.05
Samle Matrix			Soil	Soil	1 P 3/0.05	1F4/0.05 Soil
			516 Set 4669	546 Set 4660	546 Set 4670	S46 Set 4674
			510-5014000	510-5014009	516-5014670	510-50140/1
Date Sampled			Sep 13, 2016	Sep 13, 2016	Sep 13, 2016	Sep 13, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	-	< 0.5	-	-
Phenanthrene	0.5	mg/kg	-	< 0.5	-	-
Pyrene	0.5	mg/kg	-	< 0.5	-	-
10tal PAH"	0.5	mg/kg	-	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	% 0/	-	114	-	-
Organochlorine Pesticides	I	/0	-	139	-	-
Chlordanoc, Total	0.1	ma/ka	- 0.1	- 0.1	< 0.1	< 0.1
	0.05	mg/kg	< 0.1	< 0.1	< 0.05	< 0.05
4.4-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4 4'-DDT	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutyichlorendate (surr.)	1	%	IN I 400	105	113	112
Petrachioro-m-xylene (surr.)	1	70	126	96	112	120
	0.5					
Aroclor-1016	0.5	mg/kg	-	< 0.5	-	-
Aroclor 1242	0.5	mg/kg	-	< 0.5	-	-
Aroclor-1242	0.5	mg/kg	-	< 0.5		-
Aroclor-1254	0.5	ma/ka	_	< 0.5	_	_
Aroclor-1260	0.5	ma/ka	-	< 0.5	-	-
Total PCB*	0.5	ma/ka	-	< 0.5	-	-
Dibutylchlorendate (surr.)	1	%	-	105	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
TRH >C10-C16	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	-	< 100	-	-
TRH >C34-C40	100	mg/kg		< 100		
% Clay	1	%	-	-	25	-
Conductivity (1:5 aqueous extract at 25°C)	5	uS/cm	-	-	32	-
pH (units)(1:5 soil:CaCl2 extract)	0.1	pH Units	-	-	4.8	-
% Moisture	1	%	51	18	25	28
Ion Exchange Properties						
Cation Exchange Capacity	0.05	meq/100g	-	-	10	-

Client Sample ID Sample Matrix Eurofins mgt Sample No.			TP1/0.1 Soil S16-Se14668	TP2/0.1 Soil S16-Se14669	TP3/0.05 Soil S16-Se14670	TP4/0.05 Soil S16-Se14671
Date Sampled			Sep 13, 2016	Sep 13, 2016	Sep 13, 2016	Sep 13, 2016
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	5.0	15	11	18
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	20	47	110	110
Copper	5	mg/kg	24	40	21	24
Lead	5	mg/kg	50	57	42	44
Mercury	0.05	mg/kg	0.11	0.30	0.40	0.43
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	94	75	49	32

Client Sample ID			TD5/0.0	TD0/0 4	TD7/0.4	TD0/0 45
			1P5/0.2	1P6/0.1	1P7/0.1	1P8/0.15
			5011	5011	5011	5011
Eurofins mgt Sample No.			S16-Se14672	S16-Se14673	S16-Se14674	S16-Se14675
Date Sampled			Sep 13, 2016	Sep 13, 2016	Sep 13, 2016	Sep 13, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	40
TRH C15-C28	50	mg/kg	< 50	52	< 50	180
TRH C29-C36	50	mg/kg	< 50	51	< 50	170
TRH C10-36 (Total)	50	mg/kg	< 50	103	< 50	390
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	72	75	66	71
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	71
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			TP5/0.2	TP6/0.1	TP7/0.1	TP8/0.15
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins I mgt Sample No.			S16-Se14672	S16-Se14673	S16-Se14674	S16-Se14675
Date Sampled			Sep 13, 2016	Sep 13, 2016	Sep 13, 2016	Sep 13, 2016
Test/Reference	LOR	l Init				
Polycyclic Aromatic Hydrocarbons	LOIN	Offic				
Fluorene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1,2,3-cd)pyrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	94	98	95	95
p-Terphenyl-d14 (surr.)	1	%	128	129	119	103
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	102	105	125	139
Tetrachloro-m-xylene (surr.)	1	%	106	114	110	115
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	102	105	125	139
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	71
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	290
IRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
% Moisture	1	%	8.8	23	21	7.6

Client Sample ID Sample Matrix Eurofins mgt Sample No.			TP5/0.2 Soil S16-Se14672	TP6/0.1 Soil S16-Se14673	TP7/0.1 Soil S16-Se14674	TP8/0.15 Soil S16-Se14675
Date Sampled			Sep 13, 2016	Sep 13, 2016	Sep 13, 2016	Sep 13, 2016
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	10	14	3.9	6.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	76	67	15	11
Copper	5	mg/kg	11	19	20	11
Lead	5	mg/kg	32	51	31	20
Mercury	0.05	mg/kg	0.50	0.40	0.10	< 0.05
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	23	61	79	34

Client Sample ID			TP9/0.1	TP10/0.2	TP11/0.1	TP12/0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Se14676	S16-Se14677	S16-Se14678	S16-Se14679
Date Sampled			Sep 13, 2016	Sep 13, 2016	Sep 13, 2016	Sep 13, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	38	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	910	62
TRH C29-C36	50	mg/kg	< 50	< 50	91	65
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	1039	127
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	73	76	75	73
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	7.9	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	7.9	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	7.9	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	1.7	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	2.1	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	7.7	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	4.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	2.7	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	3.3	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	4.2	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	7.1	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	1.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	13	< 0.5

Client Sample ID			TP9/0.1	TP10/0.2	TP11/0.1	TP12/0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Se14676	S16-Se14677	S16-Se14678	S16-Se14679
Date Sampled			Sep 13, 2016	Sep 13, 2016	Sep 13, 2016	Sep 13, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	3.3	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	4.4	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	11	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	66.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	103	102	122	91
p-Terphenyl-d14 (surr.)	1	%	116	118	89	103
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	0.07	0.13
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	116	116	100	105
Tetrachloro-m-xylene (surr.)	1	%	100	113	96	102
Polychlorinated Biphenyls (PCB)	1					
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	116	116	100	105
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	1000	110
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
% Moisture	1	%	23	22	21	23

Client Sample ID Sample Matrix Eurofins mgt Sample No.			TP9/0.1 Soil S16-Se14676	TP10/0.2 Soil S16-Se14677	TP11/0.1 Soil S16-Se14678	TP12/0.2 Soil S16-Se14679
Date Sampled			Sep 13, 2016	Sep 13, 2016	Sep 13, 2016	Sep 13, 2016
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	35	9.1	15	14
Cadmium	0.4	mg/kg	2.6	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	44	30	37	32
Copper	5	mg/kg	80	23	20	22
Lead	5	mg/kg	140	46	87	95
Mercury	0.05	mg/kg	0.69	0.10	0.10	0.14
Nickel	5	mg/kg	26	< 5	< 5	< 5
Zinc	5	mg/kg	180	59	60	110

Client Sample ID			TP13/0.1	TP14/0.25	TP15/0.2	TP15/0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Se14680	S16-Se14681	S16-Se14682	S16-Se14683
Date Sampled			Sep 13, 2016	Sep 13, 2016	Sep 14, 2016	Sep 14, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	tions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	25	-
TRH C15-C28	50	mg/kg	< 50	< 50	53	-
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	78	-
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	75	77	75	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-

Client Sample ID			TP13/0.1	TP14/0.25	TP15/0.2	TP15/0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Se14680	S16-Se14681	S16-Se14682	S16-Se14683
Date Sampled			Sep 13 2016	Sep 13, 2016	Sep 14, 2016	Sep 14, 2016
		Linit	000 10, 2010	000 10, 2010	000 14, 2010	000 14, 2010
Polycyclic Aromatic Hydrocarbons	LOR	Unit				
	0.5	malka	< 0.5	< 0.5	105	
Indeped 1.2.2 cd/pyropo	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Nanhthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	
Pyrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	_
Total PAH*	0.5	ma/ka	< 0.5	< 0.5	< 0.5	_
2-Fluorobiohenvl (surr.)	1	//////////////////////////////////////	91	98	92	_
p-Terphenyl-d14 (surr.)	1	%	101	114	106	_
Organochlorine Pesticides	•	70	101		100	
Chlordanes - Total	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
4 4'-DDF	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
4 4'-DDT	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	ma/ka	0.07	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	124	105	100	100
Tetrachloro-m-xylene (surr.)	1	%	124	100	97	99
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dibutylchlorendate (surr.)	1	%	124	105	100	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	
% Moisture	1	%	32	17	16	22

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TP13/0.1 Soil S16-Se14680 Sep 13, 2016	TP14/0.25 Soil S16-Se14681 Sep 13, 2016	TP15/0.2 Soil S16-Se14682 Sep 14, 2016	TP15/0.4 Soil S16-Se14683 Sep 14, 2016
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	5.2	12	18	11
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	29	39	48	31
Copper	5	mg/kg	34	14	16	< 5
Lead	5	mg/kg	37	22	31	17
Mercury	0.05	mg/kg	0.16	0.25	0.26	< 0.05
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	55	21	40	5.8

Client Sample ID			TD40/0.0	TD47/0.0	TD4 0/0 0	TD40/0 0	
			1P16/0.2	1P1//0.2	1P18/0.2	Soil	
			501	501	501	5011	
Eurofins mgt Sample No.			S16-Se14684	S16-Se14685	S16-Se14686	S16-Se14687	
Date Sampled			Sep 14, 2016	Sep 14, 2016	Sep 14, 2016	Sep 14, 2016	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	40	< 20	24	
TRH C15-C28	50	mg/kg	< 50	150	< 50	92	
TRH C29-C36	50	mg/kg	< 50	150	< 50	100	
TRH C10-36 (Total)	50	mg/kg	< 50	340	< 50	216	
втех							
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	73	72	73	75	
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	63	< 50	< 50	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20	
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	

Client Sample ID			TP16/0.2	TP17/0.2	TP18/0.2	TP19/0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Se14684	S16-Se14685	S16-Se14686	S16-Se14687
Date Sampled			Sep 14, 2016	Sep 14, 2016	Sep 14, 2016	Sep 14, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	93	96	94	91
p-Terphenyl-d14 (surr.)	1	%	111	113	111	102
Organochlorine Pesticides						
Chlordanes - Total	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	ma/ka	0.19	0.29	0.26	< 0.05
4.4'-DDT	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehvde	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	ma/ka	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	88	126	115	124
Tetrachloro-m-xylene (surr.)	1	%	99	108	97	111
Polychlorinated Biphenyls (PCB)						
Aroclor-1016	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibutylchlorendate (surr.)	1	%	88	126	115	124
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions	•				
TRH >C10-C16	50	mg/ka	< 50	63	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	250	< 100	160
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
% Clay	1	%	-	29	-	-
Conductivity (1:5 aqueous extract at 25°C)	5	uS/cm	-	56	-	-
pH (units)(1:5 soil:CaCl2 extract)	0.1	pH Units	-	5.1	-	-
% Moisture	1	%	20	36	21	28

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	TP16/0.2 Soil S16-Se14684 Sep 14, 2016	TP17/0.2 Soil S16-Se14685 Sep 14, 2016	TP18/0.2 Soil S16-Se14686 Sep 14, 2016	TP19/0.2 Soil S16-Se14687 Sep 14, 2016
Ion Exchange Properties						
Cation Exchange Capacity	0.05	meq/100g	-	13	-	-
Heavy Metals						
Arsenic	2	mg/kg	13	16	12	11
Cadmium	0.4	mg/kg	< 0.4	0.4	< 0.4	< 0.4
Chromium	5	mg/kg	38	59	32	20
Copper	5	mg/kg	8.0	18	12	18
Lead	5	mg/kg	31	53	30	40
Mercury	0.05	mg/kg	0.06	0.13	0.12	0.05
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	27	72	34	70

Client Sample ID			DS1	DS2	TP9/0.3
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Se14688	S16-Se14689	S16-Se14699
Date Sampled			Sep 14, 2016	Sep 14, 2016	Sep 13, 2016
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions				
TRH C6-C9	20	mg/kg	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	27	-
TRH C15-C28	50	mg/kg	< 50	71	-
TRH C29-C36	50	mg/kg	< 50	61	-
TRH C10-36 (Total)	50	mg/kg	< 50	159	-
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	75	71	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-
TRH C6-C10	20	mg/kg	< 20	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	-
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-

Client Sample ID			DS1	DS2	TP9/0.3
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Se14688	S16-Se14689	S16-Se14699
Date Sampled			Sep 14, 2016	Sep 14, 2016	Sep 13, 2016
Test/Reference	LOP	Linit			
Polycyclic Aromatic Hydrocarbons	LOIN	Onit			
Dibenz(a h)anthracene	0.5	ma/ka	< 0.5	< 0.5	_
Eluoranthene	0.5	mg/kg	< 0.5	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	_
Indeno(1,2,3-cd)pyrepe	0.5	mg/kg	< 0.5	< 0.5	_
Naphthalene	0.5	ma/ka	< 0.5	< 0.5	_
Phenanthrene	0.5	ma/ka	< 0.5	< 0.5	-
Pyrene	0.5	ma/ka	< 0.5	< 0.5	-
Total PAH*	0.5	ma/ka	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	<u>%</u>	77	89	-
p-Terphenyl-d14 (surr.)	1	%	83	99	-
Organochlorine Pesticides					
Chlordanes - Total	0.1	ma/ka	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	ma/ka	< 0.05	< 0.05	< 0.05
4.4'-DDF	0.05	ma/ka	0.25	0.38	< 0.05
4.4'-DDT	0.05	ma/ka	0.05	0.13	< 0.05
a-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05
Aldrin	0.05	ma/ka	< 0.05	< 0.05	< 0.05
b-BHC	0.05	ma/ka	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	109	118	128
Tetrachloro-m-xylene (surr.)	1	%	111	112	116
Polychlorinated Biphenyls (PCB)	·	1			
Aroclor-1016	0.5	mg/kg	< 0.5	< 0.5	-
Aroclor-1232	0.5	mg/kg	< 0.5	< 0.5	-
Aroclor-1242	0.5	mg/kg	< 0.5	< 0.5	-
Aroclor-1248	0.5	mg/kg	< 0.5	< 0.5	-
Aroclor-1254	0.5	mg/kg	< 0.5	< 0.5	-
Aroclor-1260	0.5	mg/kg	< 0.5	< 0.5	-
Total PCB*	0.5	mg/kg	< 0.5	< 0.5	-
Dibutylchlorendate (surr.)	1	%	109	118	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions	<u> </u>			
TRH >C10-C16	50	mg/kg	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	-
	1	1			
% Moisture	1	%	18	21	21

Client Sample ID Sample Matrix			DS1 Soil	DS2 Soil	TP9/0.3 Soil
Eurofins mgt Sample No.			S16-Se14688	S16-Se14689	S16-Se14699
Date Sampled			Sep 14, 2016	Sep 14, 2016	Sep 13, 2016
Test/Reference	LOR	Unit			
Heavy Metals					
Arsenic	2	mg/kg	15	13	9.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	45	37	16
Copper	5	mg/kg	13	12	10
Lead	5	mg/kg	38	41	22
Mercury	0.05	mg/kg	0.07	0.16	< 0.05
Nickel	5	mg/kg	< 5	< 5	< 5
Zinc	5	mg/kg	36	36	21

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Sep 16, 2016	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Sep 16, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 16, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Sep 16, 2016	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 16, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M8	Sydney	Sep 16, 2016	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WATERS BY ICP-MS			
Eurofins mgt Suite B13			
Organochlorine Pesticides	Sydney	Sep 16, 2016	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polychlorinated Biphenyls (PCB)	Sydney	Sep 16, 2016	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
% Clay	Brisbane	Sep 19, 2016	6 Day
- Method: LTM-GEN-7040			
pH (units)(1:5 soil:CaCl2 extract)	Sydney	Sep 21, 2016	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Conductivity (1:5 aqueous extract at 25°C)	Sydney	Sep 20, 2016	7 Day
- Method: LTM-INO-4030			
Ion Exchange Properties	Melbourne	Sep 21, 2016	
% Moisture	Sydney	Sep 15, 2016	14 Day
- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Coi Add Pro Pro	mpany Name: dress: Dject Name: Dject ID:	Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 MACQUARIE UNIVERSITY 1601086						Order No.:PO1509Report #:515897Phone:02 9979 1722Fax:02 9979 1222							Received:Sep 15, 2016 4:13 PMDue:Sep 22, 2016Priority:5 DayContact Name:Ted Lilly
						%	H	рН	Q	Me	Ш	Mc	Ca	Ē	
Sample Detail					Clay	LD	(units)(1:5 soil:CaCl2 extract)	ganochlorine Pesticides	tals M8	rofins mgt Suite B13	isture Set	tion Exchange Capacity	rofins mgt Suite B7		
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71									Х		-
Sydn	ey Laboratory	- NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	-
Brisk	bane Laboratory	/ - NATA Site #	20794			Х									-
Exte	rnal Laboratory		o "												-
NO	Sample ID	Sample Date	Time	Matrix											
1	TP1/0.1	Sep 13, 2016		Soil	S16-Se14668				х	х		х			
2	TP2/0.1	Sep 13, 2016		Soil	S16-Se14669						Х	Х		Х	
3	TP3/0.05	Sep 13, 2016		Soil	S16-Se14670	Х		Х	Х	Х		Х	Х		-
4	TP4/0.05	Sep 13, 2016		Soil	S16-Se14671				Х	Х		Х			-
5	TP5/0.2	Sep 13, 2016		Soil	S16-Se14672						Х	Х		Х	4
6	TP6/0.1	Sep 13, 2016		Soil	S16-Se14673						Х	Х		Х	4
7	TP7/0.1	Sep 13, 2016		Soil	S16-Se14674						Х	Х		Х	4
8	TP8/0.15	Sep 13, 2016		Soil	S16-Se14675						Х	Х		Х	4
9	TP9/0.1	Sep 13, 2016		Soil	S16-Se14676						Х	Х		X	
10	TP10/0.2	Sep 13, 2016		Soil	S16-Se14677						Х	Х		Х	

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Com Addr Proje Proje	Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 Project Name: MACQUARIE UNIVERSITY Project ID: 1601086					Ore Re Ph Fa:	der N port # one: x:	o.: #:	P(51 02 02	01509 15897 2 9979 2 9979)) 1722) 1222	2 2		Received:Sep 15, 2016 4:13 PMDue:Sep 22, 2016Priority:5 DayContact Name:Ted LillyEurofins mgt Analytical Services Manager : Nibha Vaidya
		Sample Detail			% Clay	HOLD	pH (units)(1:5 soil:CaCl2 extract)	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7	
Melbou	urne Laborato	ry - NATA Site # 1254 & 142	271									Х		
Sydney	y Laboratory -	NATA Site # 18217				Х	Х	Х	Х	Х	Х	Х	Х	X
Brisba	ne Laboratory	/ - NATA Site # 20794			Х									
Extern	al Laboratory									Ň				
11 T	P11/0.1	Sep 13, 2016	Soil	S16-Se14678						X	X		X	X
12 I	P12/0.2	Sep 13, 2016	Soil	S16-Se14679						X	X		X	X
13 I	P13/0.1	Sep 13, 2016	Soil	S16-Se14680						X	X		X	X
14 I	P14/0.25	Sep 13, 2016	Soll	S16-Se14681						X	×		X	X
15 I	P15/0.2	Sep 14, 2016	Soli	S16-Se14682				v	v	~	×		×	<u>×</u>
16 I	P15/0.4	Sep 14, 2016	Soli	S16-Se14683				^	^	V	^ V		v	v l
10 T	P10/U.2	Sep 14, 2016	Sul	S10-Se14684	v		v			^ V	~	v		× ·
10 T	F17/U.2	Sep 14, 2010	Soil	S10-Se14085	^		^			^ V	^ V	^		×
19 T	P10/0.2	Sep 14, 2016	Soil	S10-Se14080						^ V	^ V			× ·
20 1	F 19/U.Z	Sop 14, 2010	Soil	S10-Se14007						^ Y	^ X		×	x l
22 D	NS2	Sep 14, 2016	Soil	S16-Se14689						X	X		x	x

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Co Ao Pr Pr	Ompany Name: Geo-Logix P/L Iddress: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 oject Name: MACQUARIE UNIVERSITY oject ID: 1601086				Order No.:PO1509Report #:515897Phone:02 9979 1722Fax:02 9979 1222							2 2		Received:Sep 15, 2016 4:13 PMDue:Sep 22, 2016Priority:5 DayContact Name:Ted Lilly
														Eurofins mgt Analytical Services Manager : Nibha Vaidya
		Sample De	tail		% Clay	ногр	pH (units)(1:5 soil:CaCl2 extract)	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7	
Melt	ourne Laborato	ry - NATA Site # 1254 8	. 14271									Х]
Syd	ney Laboratory -	NATA Site # 18217				Х	Х	Х	Х	Х	х	Х	х	
Bris	bane Laboratory	- NATA Site # 20794			Х									
Exte	rnal Laboratory	1		-1										_
23	RS1	Sep 13, 2016	Water	S16-Se14690				Х	Х					_
24	RS2	Sep 14, 2016	Water	S16-Se14691				Х	Х					-
25	TP1/0.2	Sep 13, 2016	Soil	S16-Se14692		Х								-
26	TP2/0.3	Sep 13, 2016	Soil	S16-Se14693		Х								-
27	TP3/0.3	Sep 13, 2016	Soil	S16-Se14694		Х								-
28	TP4/0.3	Sep 13, 2016	Soil	S16-Se14695		Х								-
29	TP5/0.4	Sep 13, 2016	Soil	S16-Se14696		Х								-
30	TP6/0.3	Sep 13, 2016	Soil	S16-Se14697		Х								4
31	TP7/0.5	Sep 13, 2016	Soil	S16-Se14698		Х								4
32	TP9/0.3	Sep 13, 2016	Soil	S16-Se14699				Х	Х		Х			_
33	TP10/0.4	Sep 13, 2016	Soil	S16-Se14700		Х								
34	TP11/0.3	Sep 13, 2016	Soil	S16-Se14701		Х								

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Co Ad	Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 Project Name: MACQUARIE UNIVERSITY Project ID: 1601086					Order No.:PO1509Report #:515897Phone:02 9979 1722Fax:02 9979 1222)) 1722) 1222	2		Received: Due: Priority: Contact Name:	Sep 15, 2016 4:13 PM Sep 22, 2016 5 Day Ted Lilly
Pro	oject ID:	1601086	LUNIVERSI	I											Eurofins mgt Analytical	Services Manager : Nibha Vaidya
Sample Detail				% Clay	HOLD	pH (units)(1:5 soil:CaCl2 extract)	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7				
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	.71									Х			
Sydr	ey Laboratory	- NATA Site # 1	8217				Х	X	Х	Х	Х	Х	Х	Х		
Bris	pane Laboratory	/ - NATA Site #	20794			Х										
Exte	rnal Laboratory	0 10 0010			040 0 44700		X									
35	TP12/0.4	Sep 13, 2016		Soil	S16-Se14702		X									
36	TP13/0.3	Sep 13, 2016		Soll	S16-Se14/03		X									
37	TP14/0.1	Sep 13, 2016		Soli	S16-Se14704		×									
38	TP16/0.3	Sep 14, 2016 Soil S16-Se14705				×										
39 TP17/0.5 Sep 14, 2016 Soil S16-Se14706 Test Counts 30 S16-Se14706 31 S16-Se14706 32					2	^ 14	2	7	7	18	23	2	18			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

Tormo

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		1	r	1		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	1					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank		1	1	1	1	
BTEX	1					
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank		1	1 1	1	1	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	1					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank		1	1 1	1	-	
Polycyclic Aromatic Hydrocarbons	1					
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank		1	1 1	1	-	
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	

Endin keanemg/kg <body><body> <thr></thr> <thr< th=""> <thr< th=""><</thr<></thr<></body></body>	Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
gr-Br (Lindane) mp/kg < 0.06 Pass Hegnachlor epoude mp/kg < 0.05	Endrin ketone	mg/kg	< 0.05	0.05	Pass	
Heghanlor coyold mg/kg < 0.05 Pass Heyanlor coyold mg/kg < 0.05	g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heghaldror epoxide mg/kg < 0.05 Pess Methoxychlor mg/kg < 0.02	Heptachlor	mg/kg	< 0.05	0.05	Pass	
Hazachorobanzane mgkg < 0.05 0.02 Pass Methodychor mgkg < 1	Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Methoxychlor mg/kg < < 0.2 0.2 Pass Toragheno mg/kg < 1	Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Toxappenemgkq<1oIPessRethad Blank </td <td>Methoxychlor</td> <td>mg/kg</td> <td>< 0.2</td> <td>0.2</td> <td>Pass</td> <td></td>	Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Method Blank U I Arcolor-1016 mg/kg < 0.5	Toxaphene	mg/kg	< 1	1	Pass	
Polychorinated Biphenyls (PCB) mg/kg <.0.5 M M M A Arodon-1012 mg/kg <.0.5	Method Blank		i			
Arcolor 1016 mg/kg < 0.5 Pass Arcolor 1232 mg/kg < 0.5	Polychlorinated Biphenyls (PCB)					
Aroden 1232 mg/kg <.0.5 0.5 Pass Aroden 1242 mg/kg <.0.5	Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroder:1242 mgkg < 0.5 0.5 Pass Aroder:1249 mgkg < 0.5	Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Arccion:1243 mg/kg < 0.5 Pass Arccion:1254 mg/kg < 0.5	Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Arcsion 1254 mg/kg < 0.5 0.5 Pass Arcsion 1250 mg/kg < 0.5	Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Arcolon-1280 mg/kg < 0.5 Pass Total PCB* 0.5 Pass Method Blank Total PCB* 0.5 Pass Total PCB* mg/kg < 50	Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Total PCB" mg/kg < 0.5 Pass Method Biank TRH >C10-C16 mg/kg < 50	Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Method Blank Image	Total PCB*	mg/kg	< 0.5	0.5	Pass	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions mg/kg < 50 <th< td=""><td>Method Blank</td><td></td><td></td><td></td><td></td><td></td></th<>	Method Blank					
TRH >C10-C16 mg/kg < 50 50 Pass TRH >C34-C40 mg/kg < 100	Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C16+C34 mg/kg < 100 Pass TRH >C24+C40 mg/kg < 100	TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH xC34-C40 mg/kg < 100 Pass Method Blank ····································	TRH >C16-C34	mg/kg	< 100	100	Pass	
Method Blank % <1 1 Pass % Clay % <1	TRH >C34-C40	mg/kg	< 100	100	Pass	
% < 1 Pass Conductivity (1.5 aqueous extract at 25°C) uS/cm <.5	Method Blank					
Conductivity (1:5 aqueous extract at 25°C) uS/cm < 5 5 Pass Method Blank	% Clay	%	< 1	1	Pass	
Method Blank Image Corporties Image Corporties <td>Conductivity (1:5 aqueous extract at 25°C)</td> <td>uS/cm</td> <td>< 5</td> <td>5</td> <td>Pass</td> <td></td>	Conductivity (1:5 aqueous extract at 25°C)	uS/cm	< 5	5	Pass	
ion Exchange Properties meq/100 < Cation Exchange Capacity meq/100 <	Method Blank					
Cation Exchange Capacity meq/100g < 0.05 Pass Method Blank	Ion Exchange Properties					
Method Blank Image Network Image Net	Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
Heavy Metais mg/kg < mg/kg < 2 2 Pass Cadmium mg/kg <0.4	Method Blank					
Arsenic mg/kg < 2 2 Pass Cadmium mg/kg < 0.4	Heavy Metals					
Cadmium mg/kg < 0.4 0.4 Pass Chromium mg/kg < 5	Arsenic	mg/kg	< 2	2	Pass	
Chromium mg/kg < 5 Pass Copper mg/kg < 5	Cadmium	mg/kg	< 0.4	0.4	Pass	
Copper mg/kg < 5 5 Pass Lead mg/kg < 5	Chromium	mg/kg	< 5	5	Pass	
Lead mg/kg < 5 5 Pass Mercury mg/kg < 0.05	Copper	mg/kg	< 5	5	Pass	
Mercury mg/kg < 0.05 Pass Nickel mg/kg < 5	Lead	mg/kg	< 5	5	Pass	
Nickel mg/kg < 5 Pass Zinc mg/kg < 5	Mercury	mg/kg	< 0.05	0.05	Pass	
Zinc mg/kg < 5 5 Pass LCS - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions Image: Constraint of the second seco	Nickel	mg/kg	< 5	5	Pass	
LCS - % Recovery Total Recoverable Hydrocarbons - 1999 NEPM Fractions I	Zinc	mg/kg	< 5	5	Pass	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions Image: matrix fractions Image: matris fractions Image: matrix fractions <td>LCS - % Recovery</td> <td></td> <td></td> <td></td> <td></td> <td></td>	LCS - % Recovery					
TRH C6-C9 % 78 70-130 Pass TRH C10-C14 % 84 70-130 Pass LCS - % Recovery BTEX 70-130 Pass Benzene % 94 70-130 Pass Toluene % 94 70-130 Pass Ethylbenzene % 99 70-130 Pass m&p-Xylenes % 98 70-130 Pass o-Xylene % 98 70-130 Pass Xylenes - Total % 98 70-130 Pass LCS - % Recovery % 98 70-130 Pass LCS - % Recovery % 98 70-130 Pass Xylenes - Total % 98 70-130 Pass LCS - % Recovery Naphthalene % 124 70-130 Pass Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene %	Total Recoverable Hydrocarbons - 1999 NEPM Fractions	1				
TRH C10-C14 % 84 70-130 Pass LCS - % Recovery BTEX Benzene % 94 70-130 Pass Toluene % 94 70-130 Pass Ethylbenzene % 99 70-130 Pass m&p-Xylenes % 98 70-130 Pass o-Xylene % 98 70-130 Pass Xylenes - Total % 98 70-130 Pass LCS - % Recovery 98 70-130 Pass Naphthalene % 98 70-130 Pass Ites - util % 98 70-130 Pass Yellow - Total % 98 70-130 Pass Item - Util % 98 70-130 Pass Order order % 98 70-130 Pass	TRH C6-C9	%	78	70-130	Pass	
LCS - % Recovery BTEX Image: Second	TRH C10-C14	%	84	70-130	Pass	
BTEX Image: Marcine and Ma	LCS - % Recovery					
Benzene % 94 70-130 Pass Toluene % 99 70-130 Pass Ethylbenzene % 98 70-130 Pass m&p-Xylenes % 98 70-130 Pass o-Xylene % 98 70-130 Pass Xylenes - Total % 98 70-130 Pass LCS - % Recovery % 98 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions // 124 70-130 Pass Naphthalene % 124 70-130 Pass 14	ВТЕХ	1				
Toluene % 99 70-130 Pass Ethylbenzene % 98 70-130 Pass m&p-Xylenes % 98 70-130 Pass o-Xylene % 98 70-130 Pass Xylenes - Total % 98 70-130 Pass LCS - % Recovery % 98 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions Image: Construct of the second seco	Benzene	%	94	70-130	Pass	
Ethylbenzene % 98 70-130 Pass m&p-Xylenes % 98 70-130 Pass o-Xylene % 98 70-130 Pass xylenes - Total % 98 70-130 Pass LCS - % Recovery % 98 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions Image: Control of the second seco	Toluene	%	99	70-130	Pass	
m&p-Xylenes % 98 70-130 Pass o-Xylene % 98 70-130 Pass Xylenes - Total % 98 70-130 Pass LCS - % Recovery % 98 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene % 124 70-130 Pass TRH C6-C10 % 82 70-130 Pass	Ethylbenzene	%	98	 70-130	Pass	
o-Xylene % 98 70-130 Pass Xylenes - Total % 98 70-130 Pass LCS - % Recovery 70-130 Pass 98 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractions	m&p-Xylenes	%	98	70-130	Pass	
Xylenes - Total % 98 70-130 Pass LCS - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene % 124 70-130 Pass	o-Xylene	%	98	 70-130	Pass	
LCS - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions Naphthalene % 124 70-130 Pass TRH C6-C10 % 82 70-130 Pass	Xylenes - Total	%	98	70-130	Pass	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions Image: Constraint of the second	LCS - % Recovery					
Naphthalene % 124 70-130 Pass TRH C6-C10 % 82 70-130 Pass	Total Recoverable Hydrocarbons - 2013 NEPM Fractions	1				
TRH C6-C10 % 82 70-130 Pass	Naphthalene	%	124	 70-130	Pass	
	TRH C6-C10	%	82	70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	100	70-130	Pass	
Acenaphthylene	%	103	70-130	Pass	
Anthracene	%	114	70-130	Pass	
Benz(a)anthracene	%	95	70-130	Pass	
Benzo(a)pyrene	%	108	70-130	Pass	
Benzo(b&j)fluoranthene	%	115	70-130	Pass	
Benzo(g.h.i)perylene	%	95	70-130	Pass	
Benzo(k)fluoranthene	%	127	70-130	Pass	
Chrysene	%	101	70-130	Pass	
Dibenz(a.h)anthracene	%	96	70-130	Pass	
Fluoranthene	%	97	70-130	Pass	
Fluorene	%	100	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	95	 70-130	Pass	
Naphthalene	%	111	70-130	Pass	
Phenanthrene	%	126	 70-130	Pass	
Pyrene	%	96	70-130	Pass	
LCS - % Recovery		1 1			
Organochlorine Pesticides					
Chlordanes - Total	%	105	70-130	Pass	
4.4'-DDD	%	107	70-130	Pass	
4.4'-DDE	%	109	70-130	Pass	
4.4'-DDT	%	119	70-130	Pass	
a-BHC	%	105	70-130	Pass	
Aldrin	%	105	 70-130	Pass	
b-BHC	%	98	 70-130	Pass	
d-BHC	%	104	70-130	Pass	
Dieldrin	%	107	70-130	Pass	
Endosulfan I	%	106	70-130	Pass	
Endosulfan II	%	108	 70-130	Pass	
Endosulfan sulphate	%	114	70-130	Pass	
Endrin	%	104	70-130	Pass	
Endrin aldehyde	%	115	70-130	Pass	
Endrin ketone	%	109	70-130	Pass	
g-BHC (Lindane)	%	106	70-130	Pass	
Heptachlor	%	95	 70-130	Pass	
Heptachlor epoxide	%	106	 70-130	Pass	
Hexachlorobenzene	%	102	 70-130	Pass	
Methoxychlor	%	112	 70-130	Pass	
Toxaphene	%	115	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls (PCB)	<u> </u>	101	70.400		
Aroclor-1260	%	121	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	0/	00	70.400	Dees	
	%	92	70-130	Pass	
	0/	105	70.400	Dece	
	70	05	70-130	Pass	
Heavy Metels					
	0/	02	70 4 20	Deee	
	70 0/	92	70 120	Pass	
Chromium	-70 07	94	70 120	Page	
Copper	-70 0/.	94	70 120	F dSS Doco	
oopper	70	90	10-130	r d55	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Lead			%	95		70-130	Pass	
Mercury			%	94		70-130	Pass	
Nickel			%	93		70-130	Pass	
Zinc			%	94		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	1			
Organochlorine Pesticides				Result 1				
4.4'-DDD	S16-Se13317	NCP	%	105		70-130	Pass	
4.4'-DDT	S16-Se15944	NCP	%	106		70-130	Pass	
Toxaphene	S16-Se11041	NCP	%	113		70-130	Pass	
Spike - % Recovery				1		1		
Organochlorine Pesticides				Result 1				
Chlordanes - Total	S16-Se14669	CP	%	110		70-130	Pass	
4.4'-DDE	S16-Se14669	CP	%	118		70-130	Pass	
a-BHC	S16-Se14669	CP	%	101		70-130	Pass	
Aldrin	S16-Se14669	CP	%	106		70-130	Pass	
b-BHC	S16-Se14669	CP	%	98		70-130	Pass	
d-BHC	S16-Se14669	CP	%	104		70-130	Pass	
Dieldrin	S16-Se14669	CP	%	112		70-130	Pass	
Endosulfan I	S16-Se14669	CP	%	109		70-130	Pass	
Endosulfan II	S16-Se14669	CP	%	110		70-130	Pass	
Endosulfan sulphate	S16-Se14669	CP	%	113		70-130	Pass	
Endrin	S16-Se14669	CP	%	102		70-130	Pass	
Endrin aldehyde	S16-Se14669	CP	%	110		70-130	Pass	
Endrin ketone	S16-Se14669	CP	%	100		70-130	Pass	
g-BHC (Lindane)	S16-Se14669	CP	%	99		70-130	Pass	
Heptachlor	S16-Se14669	CP	%	87		70-130	Pass	
Heptachlor epoxide	S16-Se14669	CP	%	117		70-130	Pass	
Hexachlorobenzene	S16-Se14669	CP	%	101		70-130	Pass	
Spike - % Recovery				1				
BTEX				Result 1				
Benzene	S16-Se14672	CP	%	82		70-130	Pass	
Toluene	S16-Se14672	CP	%	84		70-130	Pass	
Ethylbenzene	S16-Se14672	CP	%	82		70-130	Pass	
m&p-Xylenes	S16-Se14672	CP	%	83		70-130	Pass	
o-Xylene	S16-Se14672	CP	%	83		70-130	Pass	
Xylenes - Total	S16-Se14672	CP	%	83		70-130	Pass	
Spike - % Recovery				1				
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
Naphthalene	S16-Se14672	CP	%	91		70-130	Pass	
TRH C6-C10	S16-Se14672	CP	%	73		70-130	Pass	
Spike - % Recovery				1	I	_		
Polycyclic Aromatic Hydrocarbons	5	, ,		Result 1				
Acenaphthene	S16-Se14672	CP	%	107		70-130	Pass	
Acenaphthylene	S16-Se14672	CP	%	103		70-130	Pass	
Anthracene	S16-Se14672	CP	%	128		70-130	Pass	
Benz(a)anthracene	S16-Se14672	CP	%	119		70-130	Pass	
Benzo(a)pyrene	S16-Se14672	CP	%	112		70-130	Pass	
Benzo(b&j)fluoranthene	S16-Se14672	CP	%	90		70-130	Pass	
Benzo(g.h.i)perylene	S16-Se14672	CP	%	93		70-130	Pass	
Benzo(k)fluoranthene	S16-Se14672	CP	%	101		70-130	Pass	
Chrysene	S16-Se14672	CP	%	111		70-130	Pass	
Dibenz(a.h)anthracene	S16-Se14672	CP	%	90		70-130	Pass	
Fluoranthene	S16-Se14672	CP	%	125		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Fluorene	S16-Se14672	СР	%	105		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S16-Se14672	CP	%	93		70-130	Pass	
Naphthalene	S16-Se14672	CP	%	107		70-130	Pass	
Phenanthrene	S16-Se14672	CP	%	116		70-130	Pass	
Pyrene	S16-Se14672	CP	%	124		70-130	Pass	
Spike - % Recovery				•	· · ·			
Polychlorinated Biphenyls (PCB)				Result 1				
Aroclor-1260	S16-Se14672	CP	%	126		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S16-Se14676	CP	%	78		70-130	Pass	
Cadmium	S16-Se14676	CP	%	87		70-130	Pass	
Chromium	S16-Se14676	CP	%	82		70-130	Pass	
Mercury	S16-Se14676	CP	%	87		70-130	Pass	
Nickel	S16-Se14676	CP	%	82		70-130	Pass	
Spike - % Recovery				1				
Organochlorine Pesticides				Result 1				
Chlordanes - Total	S16-Se14679	CP	%	110		70-130	Pass	
a-BHC	S16-Se14679	CP	%	104		70-130	Pass	
Aldrin	S16-Se14679	CP	%	109		70-130	Pass	
b-BHC	S16-Se14679	CP	%	106		70-130	Pass	
d-BHC	S16-Se14679	CP	%	107		70-130	Pass	
Dieldrin	S16-Se14679	CP	%	113		70-130	Pass	
Endosulfan I	S16-Se14679	CP	%	110		70-130	Pass	
Endosulfan II	S16-Se14679	CP	%	105		70-130	Pass	
Endosulfan sulphate	S16-Se14679	CP	%	109		70-130	Pass	
Endrin	S16-Se14679	CP	%	91		70-130	Pass	
Endrin aldehyde	S16-Se14679	CP	%	120		70-130	Pass	
Endrin ketone	S16-Se14679	CP	%	78		70-130	Pass	
g-BHC (Lindane)	S16-Se14679	CP	%	103		70-130	Pass	
Heptachlor	S16-Se14679	CP	%	84		70-130	Pass	ļ
Heptachlor epoxide	S16-Se14679	CP	%	116		70-130	Pass	
Hexachlorobenzene	S16-Se14679	CP	%	103		70-130	Pass	
Methoxychlor	S16-Se14679	CP	%	106		70-130	Pass	
Spike - % Recovery				1		1	1	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S16-Se14682	CP	%	82		70-130	Pass	
TRH C10-C14	S16-Se14682	CP	%	88		70-130	Pass	ļ
Spike - % Recovery				1		-	1	
BTEX				Result 1				
Benzene	S16-Se14682	CP	%	84		70-130	Pass	
	S16-Se14682	CP	%	86		70-130	Pass	
Ethylbenzene	S16-Se14682	CP	%	82		70-130	Pass	
m&p-Xylenes	S16-Se14682	CP	%	89		70-130	Pass	
o-Xylene	S16-Se14682	СР	%	88		70-130	Pass	
Xylenes - I otal	S16-Se14682	СР	%	89		70-130	Pass	
Spike - % Recovery				D. 11				
I otal Recoverable Hydrocarbons -	2013 NEPM Fract	ions	0/	Kesult 1		70.400		
	S16-Se14682		%	100		70-130	Pass	
	S16-Se14682	CP	%	<u> </u>		/0-130	Pass	
Spike - % Recovery				Desided				
Polycyclic Aromatic Hydrocarbons	040.0+44000	0.5	0/	Kesult 1		70.400	Data	
Acenaphtheless	S16-Se14682		%	95		70-130	Pass	
Acenaphthylene	S16-Se14682	CP	%	93		/0-130	Pass	<u>i </u>

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Anthracene	S16-Se14682	CP	%	109			70-130	Pass	
Benz(a)anthracene	S16-Se14682	СР	%	107			70-130	Pass	
Benzo(a)pyrene	S16-Se14682	СР	%	101			70-130	Pass	
Benzo(b&i)fluoranthene	S16-Se14682	CP	%	97			70-130	Pass	
Benzo(a,h,i)pervlene	S16-Se14682	CP	%	83			70-130	Pass	
Benzo(k)fluoranthene	S16-Se14682	CP	%	83			70-130	Pass	
Chrysene	S16-Se14682	CP	%	101			70-130	Pass	
Dibenz(a h)anthracene	S16-Se14682	CP	%	79			70-130	Pass	
Fluoranthene	S16-Se14682	CP	%	106			70-130	Pass	
Fluorene	S16-Se14682	CP	%	03			70-130	Pass	
Indepo(1.2.3-cd)pyrepe	S16-Se1/682		70 0/	83			70-130	Pass	
Nanhthalene	S16-Se1/682		70 0/	05			70-130	Pass	
Phenanthrene	S16-Se14682		70 0/	102			70-130	Pass	
Pyropo	S16 So14692		70 0/	102			70-130	Page	
Spike - % Pecovery	310-3614002	UF	/0	103	<u> </u>		70-130	газэ	
Spike - % Recovery				Booult 1					
Arealer 1260	S16 Se14692	CD	0/				70.120	Deee	
Alocioi-1280	510-5014062	CP	70	121			70-130	Pass	
Spike - % Recovery				Desult 1					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions	0/	Result 1			70.400	Deer	
1RH >C10-C16	S16-Se14682	CP	%	97			70-130	Pass	
Spike - % Recovery				D 114					
Heavy Metals				Result 1				_	
Arsenic	S16-Se14686	CP	%	91			70-130	Pass	
Cadmium	S16-Se14686	CP	%	110			70-130	Pass	
Chromium	S16-Se14686	CP	%	123			70-130	Pass	
Copper	S16-Se14686	CP	%	109			70-130	Pass	
Lead	S16-Se14686	CP	%	101			70-130	Pass	
Mercury	S16-Se14686	CP	%	99			70-130	Pass	
Nickel	S16-Se14686	CP	%	105			70-130	Pass	
Zinc	S16-Se14686	CP	%	127			70-130	Pass	
Spike - % Recovery				1	I		1		
Organochlorine Pesticides	1			Result 1					
Chlordanes - Total	S16-Se14689	CP	%	129			70-130	Pass	
4.4'-DDE	S16-Se14689	CP	%	128			70-130	Pass	
a-BHC	S16-Se14689	CP	%	124			70-130	Pass	
Aldrin	S16-Se14689	CP	%	129			70-130	Pass	
b-BHC	S16-Se14689	CP	%	124			70-130	Pass	
d-BHC	S16-Se14689	CP	%	130			70-130	Pass	
Dieldrin	S16-Se14689	CP	%	130			70-130	Pass	
Endosulfan I	S16-Se14689	CP	%	130			70-130	Pass	
Endosulfan II	S16-Se14689	CP	%	126			70-130	Pass	
Endosulfan sulphate	S16-Se14689	CP	%	130			70-130	Pass	
Endrin	S16-Se14689	CP	%	130			70-130	Pass	
Endrin aldehyde	S16-Se14689	CP	%	113			70-130	Pass	
g-BHC (Lindane)	S16-Se14689	CP	%	130			70-130	Pass	
Heptachlor	S16-Se14689	СР	%	126			70-130	Pass	
Heptachlor epoxide	S16-Se14689	СР	%	129			70-130	Pass	
Hexachlorobenzene	S16-Se14689	СР	%	117			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Organochlorine Pesticides	I			Result 1	Result 2	RPD			
Chlordanes - Total	S16-Se14668	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S16-Se14668	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
4.4'-DDT	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S16-Se14668	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S16-Se14668	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S16-Se14668	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S16-Se14668	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD			
Aroclor-1016	S16-Se14668	СР	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S16-Se14668	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S16-Se14668	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S16-Se14668	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S16-Se14668	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S16-Se14668	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S16-Se14669	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S16-Se14669	CP	ma/ka	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S16-Se14669	CP	ma/ka	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S16-Se14669	CP	ma/ka	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S16-Se14669	СР	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S16-Se14669	СР	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S16-Se14669	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S16-Se14669	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xvlene	S16-Se14669	CP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Xvlenes - Total	S16-Se14669	CP	ma/ka	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S16-Se14669	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S16-Se14669	CP	ma/ka	< 20	< 20	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	· · · · · · · · · · · · · · · · · · ·			Result 1	Result 2	RPD			
Acenaphthene	S16-Se14669	СР	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S16-Se14669	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S16-Se14669	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S16-Se14669	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S16-Se14669	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&i)fluoranthene	S16-Se14669	CP	ma/ka	< 0.5	< 0.5	<1	30%	Pass	
	0.00014000	<u>.</u>							

Duplicate									
Polycyclic Aromatic Hydrocarbons	6			Result 1	Result 2	RPD			
Benzo(g.h.i)perylene	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate					Г – Г				
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S16-Se14669	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S16-Se14669	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S16-Se14669	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate								1	
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD		_	
Aroclor-1016	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S16-Se14669	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S16-Se14669	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
				Desult 1	Desult 0				
Total Recoverable Hydrocarbons -	2013 NEPW Fract	ions		Result	Result 2	RPD	200/	Daaa	
TRH >C10-C16	S16-Se14669		mg/kg	< 50	< 50	<1	30%	Pass	
TRH >016-034	S16-Se14669		mg/kg	< 100	< 100	<1	30%	Pass	
IKI >0.34-040	510-5014669	CP	mg/kg	< 100	< 100	<1	30%	Pass	
				Decult 1	Booult 0				
% Clov	M16 0-04744	NOD	0/			KPU .4	200/	Daat	
Conductivity (1:5 concerns outroat	1110-3001711	NCP	70	2.5	2.5	<1	30%	Pass	
at 25°C)	S16-Se14916	NCP	uS/cm	120	110	4.0	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S16-Se14675	CP	%	7.6	8.5	12	30%	Pass	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Se14675	CP	mg/kg	6.0	6.9	14	30%	Pass	
Cadmium	S16-Se14675	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Se14675	CP	mg/kg	11	13	17	30%	Pass	
Copper	S16-Se14675	CP	mg/kg	11	12	6.0	30%	Pass	
Lead	S16-Se14675	CP	mg/kg	20	20	<1	30%	Pass	
Mercury	S16-Se14675	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S16-Se14675	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S16-Se14675	CP	mg/kg	34	38	10	30%	Pass	
Duplicate				i					
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S16-Se14678	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S16-Se14678	CP	mg/kg	0.07	< 0.05	59	30%	Fail	Q15
4.4'-DDT	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S16-Se14678	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S16-Se14678	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S16-Se14678	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				1					
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD			
Aroclor-1016	S16-Se14678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S16-Se14678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S16-Se14678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S16-Se14678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S16-Se14678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S16-Se14678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate								1	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S16-Se14681	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD		_	
Benzene	S16-Se14681	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S16-Se14681	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S16-Se14681	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S16-Se14681	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S16-Se14681	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S16-Se14681	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S16-Se14681	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbons	;			Result 1	Result 2	RPD			
Acenaphthene	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S16-Se14681	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S16-Se14681	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S16-Se14681	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S16-Se14681	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S16-Se14681	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S16-Se14681	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S16-Se14681	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S16-Se14681	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S16-Se14681	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S16-Se14681	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				1	1			1	
Polychlorinated Biphenyls (PCB)				Result 1	Result 2	RPD			
Aroclor-1016	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S16-Se14681	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S16-Se14685	CP	%	36	42	16	30%	Pass	

Duplicate									
Polychlorinated Biphenyls (PCB)	Result 1	Result 2	RPD						
Aroclor-1016	S16-Se14688	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	S16-Se14688	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1242	S16-Se14688	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	S16-Se14688	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	S16-Se14688	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	S16-Se14688	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Nibha Vaidya	Analytical Services Manager
Alex Petridis	Senior Analyst-Metal (VIC)
Ivan Taylor	Senior Analyst-Metal (NSW)
Jonathon Angell	Senior Analyst-Inorganic (QLD)
Ryan Hamilton	Senior Analyst-Inorganic (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

 * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Ted Lilly

Report Project name Project ID Received Date

515897-W MACQUARIE UNIVERSITY 1601086 Sep 15, 2016

Client Sample ID			RS1	RS2
Sample Matrix			Water	Water
Eurofins mgt Sample No.			S16-Se14690	S16-Se14691
Date Sampled			Sep 13, 2016	Sep 14, 2016
Test/Reference	LOR	Unit		
Organochlorine Pesticides				
Chlordanes - Total	0.001	mg/L	< 0.001	< 0.001
4.4'-DDD	0.0001	mg/L	< 0.0001	< 0.0001
4.4'-DDE	0.0001	mg/L	< 0.0001	< 0.0001
4.4'-DDT	0.0001	mg/L	< 0.0001	< 0.0001
a-BHC	0.0001	mg/L	< 0.0001	< 0.0001
Aldrin	0.0001	mg/L	< 0.0001	< 0.0001
b-BHC	0.0001	mg/L	< 0.0001	< 0.0001
d-BHC	0.0001	mg/L	< 0.0001	< 0.0001
Dieldrin	0.0001	mg/L	< 0.0001	< 0.0001
Endosulfan I	0.0001	mg/L	< 0.0001	< 0.0001
Endosulfan II	0.0001	mg/L	< 0.0001	< 0.0001
Endosulfan sulphate	0.0001	mg/L	< 0.0001	< 0.0001
Endrin	0.0001	mg/L	< 0.0001	< 0.0001
Endrin aldehyde	0.0001	mg/L	< 0.0001	< 0.0001
Endrin ketone	0.0001	mg/L	< 0.0001	< 0.0001
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	< 0.0001
Heptachlor	0.0001	mg/L	< 0.0001	< 0.0001
Heptachlor epoxide	0.0001	mg/L	< 0.0001	< 0.0001
Hexachlorobenzene	0.0001	mg/L	< 0.0001	< 0.0001
Methoxychlor	0.0001	mg/L	< 0.0001	< 0.0001
Toxaphene	0.01	mg/L	< 0.01	< 0.01
Dibutylchlorendate (surr.)	1	%	62	50
Tetrachloro-m-xylene (surr.)	1	%	103	101
Heavy Metals				
Arsenic	0.001	mg/L	< 0.001	< 0.001
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002
Chromium	0.001	mg/L	< 0.001	< 0.001
Copper	0.001	mg/L	< 0.001	< 0.001
Lead	0.001	mg/L	< 0.001	< 0.001
Mercury	0.0001	mg/L	< 0.0001	< 0.0001
Nickel	0.001	mg/L	< 0.001	< 0.001
Zinc	0.005	mg/L	< 0.005	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B13			
Organochlorine Pesticides	Sydney	Sep 19, 2016	7 Day
- Method: E013 Organochlorine Pesticides (OC)			
Metals M8	Sydney	Sep 15, 2016	28 Day
Mathedul TM MET 2040 Matele in Watare by ICD MC			

- Method: LTM-MET-3040 Metals in Waters by ICP-MS

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Col Add Pro Pro	mpany Name: dress: Dject Name: Dject ID:	: Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 MACQUARIE UNIVERSITY 1601086						der N port # one: x:	o.: #:	P 51 02 02	O150 15897 2 997 2 997 2 997	9 9 1722 9 1222	2 2		Received:Sep 15, 2016 4:13 PMDue:Sep 22, 2016Priority:5 DayContact Name:Ted Lilly
								рН	Q	Me	Ē	Mc	Ca	Ē	
Sample Detail						Clay	LD	(units)(1:5 soil:CaCl2 extract)	ganochlorine Pesticides	tals M8	rofins mgt Suite B13	isture Set	tion Exchange Capacity	rofins mgt Suite B7	
Melbourne Laboratory - NATA Site # 1254 & 14271								\mid				Х		-	
Sydn	ey Laboratory	- NATA Site # 1	8217				Х	Х	X	Х	Х	Х	Х	Х	
Brisk	bane Laboratory	y - NATA Site #	20794			Х			┝──┦						
Exte	rnal Laboratory	Commis Data	Comulina	Matuix					┟──┦						
NO	Sample ID	Sample Date	Time	watrix											
1	TP1/0.1	Sep 13, 2016		Soil	S16-Se14668				х	х		х			
2	TP2/0.1	Sep 13, 2016		Soil	S16-Se14669				\mid		Х	Х		Х	-
3	TP3/0.05	Sep 13, 2016		Soil	S16-Se14670	Х		Х	Х	Х		Х	Х		-
4	TP4/0.05	Sep 13, 2016		Soil	S16-Se14671				Х	Х		Х			-
5	TP5/0.2	Sep 13, 2016		Soil	S16-Se14672						Х	Х		Х	-
6	TP6/0.1	Sep 13, 2016		Soil	S16-Se14673						Х	Х		Х	-
7	TP7/0.1	Sep 13, 2016		Soil	S16-Se14674						Х	Х		Х	-
8	TP8/0.15	Sep 13, 2016		Soil	S16-Se14675						Х	Х		Х	-
9	TP9/0.1	Sep 13, 2016		Soil	S16-Se14676				 		Х	Х		Х	-
10	TP10/0.2	Sep 13, 2016		Soil	S16-Se14677						Х	Х		Х	

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Co Ad Pro Pro	Company Name: Geo-Logix P/L Address: Bid Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 Project Name: MACQUARIE UNIVERSITY Project ID: 1601086						der Ne port # one: x:	o.: #:	P0 51 02 02	O1509 15897 2 9979 2 9979	9 9 1722 9 1222	2 2		Received:Sep 15, 2016 4:13 PMDue:Sep 22, 2016Priority:5 DayContact Name:Ted Lilly
Sample Detail						HOLD	pH (units)(1:5 soil:CaCl2 extract)	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7	
Melb	ourne Laborato	ry - NATA Site # 1254 & 142	.71									Х		_
Sydi	ney Laboratory -	NATA Site # 18217				Х	Х	Х	Х	Х	Х	Х	Х	_
Bris	bane Laboratory	/ - NATA Site # 20794			Х									-
Exte	rnal Laboratory													-
11	TP11/0.1	Sep 13, 2016	Soil	S16-Se14678						Х	Х		Х	-
12	TP12/0.2	Sep 13, 2016	Soil	S16-Se14679						Х	Х		Х	-
13	TP13/0.1	Sep 13, 2016	Soil	S16-Se14680						Х	Х		Х	-
14	TP14/0.25	Sep 13, 2016	Soil	S16-Se14681						Х	Х		Х	-
15	TP15/0.2	Sep 14, 2016	Soil	S16-Se14682						Х	Х		Х	-
16	TP15/0.4	Sep 14, 2016	Soil	S16-Se14683				Х	Х		Х			-
17	TP16/0.2	Sep 14, 2016	Soil	S16-Se14684						Х	Х		Х	-
18	TP17/0.2	Sep 14, 2016	Soil	S16-Se14685	Х		Х			Х	Х	Х	Х	4
19	TP18/0.2	Sep 14, 2016	Soil	S16-Se14686						Х	Х		Х	4
20	TP19/0.2	Sep 14, 2016	Soil	S16-Se14687						Х	Х		X	4
21	DS1	Sep 14, 2016	Soil	S16-Se14688						Х	Х		Х	-
22	DS2	Sep 14, 2016	Soil	S16-Se14689						Х	Х		Х	

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co Ad Pro Pro	mpany Name: dress: Dject Name: Dject ID:	Geo-Logix P Bld Q2 Level Warriewood NSW 2102 MACQUARII 1601086			Or Re Ph Fa	der Ne port # one: x:	o.: #:	P0 51 02 02	D1509 15897 2 9979 2 9979)) 1722) 1222	2		Received:Sep 15, 2016 4:13 PMDue:Sep 22, 2016Priority:5 DayContact Name:Ted LillyEurofins mgt Analytical Services Manager : Nibha Vaidya		
		Sa		% Clay	HOLD	pH (units)(1:5 soil:CaCl2 extract)	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7			
Melb	ourne Laborato	ry - NATA Site	# 1254 & 142	71									Х		
Sydr	ney Laboratory -	NATA Site # 1	8217				Х	Х	Х	Х	Х	Х	Х	Х	
Bris	pane Laboratory	- NATA Site #	20794			Х									
Exte	rnal Laboratory														_
23	RS1	Sep 13, 2016		Water	S16-Se14690				Х	Х					_
24	RS2	Sep 14, 2016		Water	S16-Se14691				Х	Х					_
25	TP1/0.2	Sep 13, 2016		Soil	S16-Se14692		Х								
26	TP2/0.3	Sep 13, 2016		Soil	S16-Se14693		Х								
27	TP3/0.3	Sep 13, 2016		Soil	S16-Se14694		Х								
28	TP4/0.3	Sep 13, 2016		Soil	S16-Se14695		Х								_
29	TP5/0.4	Sep 13, 2016	S16-Se14696		Х								_		
30	TP6/0.3	Sep 13, 2016		Soil	S16-Se14697		Х								
31	TP7/0.5	Sep 13, 2016	S16-Se14698		Х										
32	TP9/0.3	Sep 13, 2016	S16-Se14699				Х	Х		Х					
33	TP10/0.4	Sep 13, 2016		Soil	S16-Se14700		Х								
34	TP11/0.3	Sep 13, 2016		Soil	S16-Se14701		Х								

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co Ad	mpany Name: dress:	Geo-Logix P Bld Q2 Level Warriewood NSW 2102	/L I 3, 2309/4 Da			Or Re Ph Fa	der N port # one: x:	o.: #:	P(5 02 02	O1509 15897 2 9979 2 9979)) 1722) 1222	2		Received: Due: Priority: Contact Name:	Sep 15, 2016 4:13 PM Sep 22, 2016 5 Day Ted Lilly	
Pro	oject ID:	1601086	LUNIVERSI	I											Eurofins mgt Analytical	Services Manager : Nibha Vaidya
			% Clay	HOLD	pH (units)(1:5 soil:CaCl2 extract)	Organochlorine Pesticides	Metals M8	Eurofins mgt Suite B13	Moisture Set	Cation Exchange Capacity	Eurofins mgt Suite B7					
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	.71									Х			
Sydr	ey Laboratory	- NATA Site # 1	8217				Х	X	Х	Х	Х	Х	Х	Х		
Bris	pane Laboratory	/ - NATA Site #	20794			Х										
Exte	rnal Laboratory	0 10 0010			040 0 44700		X									
35	TP12/0.4	Sep 13, 2016	S16-Se14702		X											
36	TP13/0.3	Sep 13, 2016		S16-Se14/03		X										
37	TP14/0.1	Sep 13, 2016		Soli	S16-Se14704		×									
38	TP16/0.3	S16-Se14705		×												
Test	Counts	13ep 14, 2016	1310-3014706	2	^ 14	2	7	7	18	23	2	18				

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

Tormo

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
coc	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		1	1		
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.01	0.01	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery		· · · · · · · · · · · · · · · · · · ·	1		
Organochlorine Pesticides					
Chlordanes - Total	%	130	70-130	Pass	
4.4'-DDD	%	130	70-130	Pass	
4.4'-DDE	%	130	70-130	Pass	
4.4'-DDT	%	130	70-130	Pass	
a-BHC	%	120	70-130	Pass	
Aldrin	%	130	70-130	Pass	
b-BHC	%	130	70-130	Pass	
d-BHC	%	120	70-130	Pass	
Dieldrin	%	130	70-130	Pass	
Endosulfan I	%	130	70-130	Pass	
Endosulfan II	%	120	70-130	Pass	
Endosulfan sulphate	%	120	70-130	Pass	
Endrin	%	130	70-130	Pass	
Endrin aldehyde	%	130	70-130	Pass	
g-BHC (Lindane)	%	130	70-130	Pass	
Heptachlor	%	120	70-130	Pass	
Heptachlor epoxide	%	130	70-130	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Methoxychlor			%	120			70-130	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	101			70-130	Pass	
Cadmium			%	106			70-130	Pass	
Chromium			%	106			70-130	Pass	
Copper			%	105			70-130	Pass	
Lead			%	106			70-130	Pass	
Mercury			%	102			70-130	Pass	
Nickel			%	101			70-130	Pass	
Zinc			%	100			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							•		
Heavy Metals				Result 1					
Arsenic	S16-Se14691	CP	%	99			70-130	Pass	
Cadmium	S16-Se14691	CP	%	101			70-130	Pass	
Chromium	S16-Se14691	CP	%	103			70-130	Pass	
Copper	S16-Se14691	CP	%	101			70-130	Pass	
Lead	S16-Se14691	CP	%	104			70-130	Pass	
Mercury	S16-Se14691	CP	%	100			70-130	Pass	
Nickel	S16-Se14691	CP	%	99			70-130	Pass	
Zinc	S16-Se14691	CP	%	96			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				-					
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Se14690	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	S16-Se14690	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S16-Se14690	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	S16-Se14690	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	S16-Se14690	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S16-Se14690	СР	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S16-Se14690	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	S16-Se14690	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Nibha Vaidya Ivan Taylor Ryan Hamilton Analytical Services Manager Senior Analyst-Metal (NSW) Senior Analyst-Organic (NSW)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | rag shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | rag to liable for cost, observation and the person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine | rag to liable for cost, observation and the person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine | rag to liable for cost, observation and regord to the encourced except in full and relates only to the intert sincicated otherwate.

ABN - 50 005 085 521

mgt

e mail : EnviroSales@eurofins com web : www.eurofins.com.au

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Ge o-Logi x P/L
Contact name:	Ted Lilly
Project name:	MACQUARIE UNIVERSITY
Project ID:	1601086
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Sep 15, 2016 4:13 PM
Eurofins mgt reference:	51 5897

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 3 degrees Celsius.
- All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \checkmark Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Ted Lilly - tlilly@geo-logix.com.au.

38 Years of Environmental Analysis & Experience

Geo-Logix Pty Lte	d				CHAIN	OF	F C	US	TC	D	(F	age			o		\sum									
Building Q2, Level 3	Project Manage	er: 🔳	e	<u>k</u>	Lilly						I	Purcl	hase	Ord	er N	o: _	Ρ	Ð	15	0	2								
2309/4 Daydream St	Contact email:		+1;	lle	Q alo-logix-cor	~_cv	~					Quot	te Rei	ferei	nce:	_		5	15	30	57				•				
Warriewood, NSW 2102	CC email:	a	m	:0:	mzie Q ago-loci	K -(0-	- on	~		:	Send	I Invo	oice	to:		ccour	nts@	gep-la	ogix o	com a	ŧψ	-	-					
ABN: 86 116 892 936	Project Name:	_^	nacq	In:	e University						I	Date	Subi	nitte	ed:		14	10	1/14	•									
P: (02) 9979 1722	Project Number	r:(<u> </u>	10	86							TAT	requi	red:		_	-	5	11	l	_	_	_						
F: [02] 9979 1222					AN	AL	(SIS	s RI	EQ	UIR	ED			11.2															
		Ma	atrix	1	_									Т	Τ	Τ	•	T	~	Ŧ	Γ.				6				
Lab ID Sample ID	Pate	soil water	air	paint, filters	Comments	COMPOSITE	TPH - C6 - C9	TPH - C10 - C36	VOCs	BTEXN	PAHs	PCBs	OCPs	0PPs	Phenols	Metals - M8	Metals - Lead Metals - Cnarify *		Asbestos (ID only	Asbestos (WA DC	Foreign Materials	Conductivity (EC)	pH (CaCl ₂)	% Clay Content	Cat Exc Cap (CEC		pioH	SUITE(S)	Eurofins MGT Suite Codes
TP1/0.1	13/9/16											>	e a				X						_			-+			B1 TRH/BTEXN
TP1/p.2				_									_																BIA TRHVBTEXN/Pb
TP2/0.		$\left \right $			_																							B7, B1.	B2A TRHMAH/Pb
1P2/P-		$\downarrow \downarrow$																								_	X	1	B3 PAH/Phenols B4 TRH/BTEXN/PAH
17-3/0.0		[]											× .				X												B4A TRH/BTEXN/PAH/Phenois
TP3/0.	3	$\left\{ \mid \right\}$																									X		85 TRH/BTEXN/M7
TP4/0.0	>												X				X												
TP4/0-3																											X	6	B7A TRH/BTEXN/PAH/Phenole/M8
TPS/0.1	2																											BZDI	B8 TRH/VOC/PAH/M8
TP5/0.4	-	Π																	1	1							X		B9 TRHBTEXN/PAH/OCP/M8
TP6/0.1																+		+	+	1						+		87 813	B10 TRH/BTEXN/PAH/OCP/OPP/MB B11 Na/K/Ca/Mo/CI/SOJ/COJ/HCOJ/NHJ/NO
TP6/0:	2										Ť							1-	1	\uparrow		-					X	1	B11A B11/Alkelinity
TP70																\uparrow		1	1	1-							- -	BI BI	B11B B11/EC/TDS
TPID	5	11 1											-		+	-		╞		-						+	1	V7, V1	B12 TRH/BTEXN/Oxygenates/Ethanol
TPRAC		111								-	-+		-	+	+		+	+-		+ -					+	-+-		R-1 B13	B13) OCP/PCB
Tralai		} 		+								+	x	+	-+-	-		-	+							+	+	RI0	B14 OCP/OPP
TOALO		} 						-+						- +-	+-		~	+-	+									07,01	В15 ОСР/ОРР/РСВ
TOINTA	2	+++		+					-		\rightarrow			+		+			+						-+		+	87.0.4	B16 TDS/SOJ/CHJAIk/BOD/COD/HPC/CUB
TDN/04		$\left\{ \right\}$							-+	-+			_	_	+-	+		+										07,013	B18 CI-/SO/pH
TO:10.1						-					-+	+	+		-	+		-	-	-					-+			1120	5 B19 N/P/K
115110-		VII				_	_	1				1							_									pr,11	B20 CEC/NESP/Ca/Ma/Na/K
Metals**(cir As, Cd, Cr, Cu, Ni,	Pb, Zn, Hg, Cr ⁶⁺ , Cr	³⁺ , Fe ²⁺ , F	≂e ³⁺ , E	3e, B, A	Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo,	Ag, Ba	a, TI, B	Bi, Sb				_		_						_									

McKenzz Date/Time: 14/9/16 Signature: A. McKenzz

Pedro

Received by:

Relinquished by: Aidon

DaterTime 14 19/16 Signature PS 21

Geo-Logix Pty Ltd	l		СН	AIN C	FC	US	TO	DY			I	age		2	of	2								
Building Q2, Level 3	Project Manager:	Ted	Lille						Pur	chas	e Orc	ler No	o:	8	150	9								
2309/4 Daydream St	Contact email:	+1:14	a geo-Louix.	- :	^				Qu	ote R	efere	nce:	_			1								
Warriewood, NSW 2102	CC email:	anche	cnz: 2 (0) 0/08- 1		<u>~</u> .	~			Ser	nd Inv	voice	to:	a	ccount	sidigeo-	OQIX	.com	ац						
ABN: 86 116 892 936	Project Name:	Macqu	one Universit	<u>х</u>					Dat	e Sul	bmitt	ed:		14	19/	16	<u></u>		_					
P: (02) 9979 1722	Project Number:	16011	086	-					TA	req:	uired	:	_	3	- 70	1	0. 							
F: 02 9979 1222				ANAL	YSI	S RI	EQU	JIRE	D							1								
		Matrix			T				T			T	T	T			2	1					1	
Lab ID Sample ID	Date/ 5	water air paint, filters	हे Comments	COMPOSITE	TPH - C6 - C9	TPH - C10 - C36	VOCs	BTEXN	PCBs	0CPs	OPPs	Phenois	Metals - M8	Metals - Lead Metals - Specify **	TCLP		Foreign Materials	Conductivity (EC)	pH (CaCl ₂)	% Clay Content	Cat Exc Cap (CEC)	1	SUITE(S)	Eurofins MGT Suite Codes
TP11/0-7	513/9/16X				_			_															X	E1A TRHMAH
TPT2/0.2	2												_							_			B7, B13	2 TRH/8TEXN/Pb
TP12/0.4	H																						X	B2A TRHMAH/Pb
TP310.1																							B7,B1	B3 PAH/Phenois B4 TRH/BTEXN/PAH
TP13/0.1	3																						X	84A TRH/BTEXN/PAH/Phenois
TP14/0.2	\$]]																						BZBI	B5 TRH/BTEXN/M7
TPH BI																							k	B6 TRH/BTEXN/M8
TPISTIZ	14/9/16													1		+	+	+					B7-B13	B7A TRH/BTEXN/PAH/M8
TPS D.4									1	\mathbf{V}			x			+	+	+						B8 TRH/VOC/PAHAM8
TDIL 0 2		+-++			+		+								+	+	+	+			++		B1. 417	B9 TRH/BTEXN/PAH/OCP/M8
TP16/02		+ +			+		-+				-			+	++	+-	+		$\left - \right $			-+-	V V (V)	B10 TRH/BTEXN/PAH/OCP/OPP/M8
10/04 2	+				+						-		+		┼──┼─		+	-			+		× 101.00	B11 Na/K/Ca/Mg/Cl/SO ₄ /CO ₂ /HCO ₂ /NH ₂ NO ₁
10.0		+		_	+	$\left \right $		_								_	+	-			_		V 4, 15 15	B118 B11/EC/TOS
TP17/0.5				_			_					_	_	_							\rightarrow		0	B12 TRH/BTEXN/Oxygenates/Ethanol
110/0.2	\downarrow \downarrow \downarrow				-				_				\perp			_							IT 613	B12A TRH/BTEXN/Oxygenates
TPM/0.	4										_												B7 BB	B13 OCP/PCB
L DS1																							87.B13	B14 OCPOPP
DS2																							BFRIZ	BIS OCHOPPICS BIG TDS/SOJ/CHJAIk/BOD/COD/HPC/CUB
RSI	12/9/16				1)	1			+	1	1		\neg			- 400	B17 SO ₂ NO ₃ /Fe++/HPC/CUB
057	14/0/11						-	\neg	-	5			r		+ +-	+		+		+		-	+	B18 CI-/SO_/pH
					+		+									+	+	-				_		B19 N/P/K
										<u> </u>														B20 CEC/%ESP/Ca/Ma/Na/K

Chain of Custody

Signature

2 Received by Petr

Date/Time: 14/9/16 Signature:

Metals**(cir As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr **, Cr 3*, Fe **, Fe **, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Be, Ti, B, Sb

M-Korse _ Date/Time: /Jidan Relinquished by:

PS

Geo-Logix Pty Lto	d l	. 1 1	CHAIN	I OI	F C	USI	IOD	Y			Pag	ge			of	2								
Building Q2, Level 3	Project Manager:	Ted L	ilk						Purch	ase C)rder	No:		20		0	2							
2309/4 Daydream St	Contact email:	+ Kille Q	aco-loaix-io	~.cv	~				Quote	Refe	renc	e:		5	15	10	57							
Warriewood, NSW 2102	CC email: (x Mc Omz	Pago-Inci	K -(<u>~</u> و	-0~			Send	Invoi	ce to		acco	unts	Daen-k		om a							
ABN: 86 116 892 936	Proiect Name:	Magnin	Voiversity						Date 5	Subm	itted		10	410	λ / μ			2						
P. (02) 9979 1722	Project Number:	KOLOS	6						TAT			•		1	41									
F: (02) 9979 1222		160100						_		equin	eu.		-	2	101				-	_				
			AN	AL \	/SIS	S RE	QUI	RED)				-											
		Matrix												:	2	(HO				5				
		<u>p</u>		μ	ဗ္မ	C36							ad	ecify	Do	NA D	terial	y (EC		tent CE				Eurofins MGT Suite
		Life		OSIT	če če	C10 -						- M8	- Le	- Sp	tos ()	tos ()	D Ma	ctivit	Cl ₂)	Con			(s	Codes
		aint, atter	Commante	GMP	H.	H		AHs		PPs PPs	heno	etals	etals	etals	sbes bes	spes	oreig	ondu	L Ca	at Ex		Pla		
	12 6 116		Comments	<u> </u>	-	+ :	> @					2	₹ V	2		×	Ē	Ŭ	2	<u>x 0</u>	+	-+±		B1 TRH/BTEXN
TP1/2 2							+	+	+	1000	-	+	 		+				_			+		BIA TRHMAH
TOTO						+		+	++		+	+										-12	010	B2 TRH/BTEXNIP
10203	<u>}</u>			⊢		\rightarrow	+	+	+ +		+-	+	$\left \right $			–		\rightarrow		_		+	DT, DI	B3 PAH/Phenols
TPL-							+	+	+-+		+	+				-			_			_ <u>}</u>	2	B4 TRH/BTEXN/PAH
10000				-					/	<i>•</i>	+			_		+							_	B4A TRH/BTEXN/PAH/Phenots
15/0.	₹ -								+			-									+	/X	C	B6 TRH/BTEXN/M8
174/0.0	<u> </u>							+		<u> </u>	-		X		_	<u> </u>					┢	_		87) TRH/BTEXN/PAH/M8
IF4/D-S				┣—			_		+ $+$		-			-		<u> </u>							0	B7A TRH/BTEXN/PAH/Phenois/M8
IFS/0.	4						_				-	<u> </u>		\rightarrow		<u> </u>					\downarrow		B7,U	
1-5/0.4								-	┝──┝	_					_	<u> </u>						X		B10 TRH/BTEXN/PAH/OCP/OPP/M8
1P6/0.1								_		_	_				_	ļ		\square					B7, B13	B11 Na/K/Ca/Mg/Cl/SOJ/COJ/HCOJ/NHJNO
<u>1P6/0.</u>							_				_					_						X	{	B11A B11/Alkalinity
[P7] D. I			*				-	\downarrow			1				_				_				B7,B	B11B B11/EC/TDS B12 TRH/BTEXN/Oxygenates/Ethanol
14/03	5																					X		B12A TRH/BTEXN/Oxygenates
TP8/0.15	5																						B7, BI.	BI3 OCP/PCB
TP9/0.1										×			X										B7,BI	BI4 OCP/OPP
TP9/0.3										Τ												X		B16 TDS/SO,/CH,/Alk/BOD/COD/HPC/CUB
TP10/0.0	2																	1	\neg	-		- <u>F</u> -	BF.DI	817 SO_NO_/Fe++/HPC/CUB
TP10/0.4	-										1					-							6	B18 CI-/SO_/pH
TPILO							1				1			-	-			+	-			1	BZD	B19 N/P/K
Motoletticis Ac. Cd. Cr. Cu. Ni		2* Eo 3* Do D 41 14		Ac. P.						_	-	-	<u>. </u>			-	-	-	12	1	<u> </u>	-	1. 201	ZI IDZV CECIMESPICAMA/NA/K

Chain of Custody

Relinquished by: __

Received by Pedro DaterTime 14/9/16 Signature PS 21 Okn N. Effingt · 140916 1720 /18

Geo-Logix Pty Lto	d in the second s		CHAIN O	F C	UST	ODY	*		F	age	2	<u> </u>	f	7								
Building Q2, Level 3	Project Manager:	Ted Lill	N				Pu	rchasi	e Ord	er No:		10	00	2								
2309/4 Daydream St	Contact email:	+ lillua a	on-Louis con an	`			0		e 010	er 140.		-12	L.V.	1	-		-	-				
Warriewood, NSW 2102	CC email:	Anthenzie	Q des-Inizio	~ .«	~		So	nd Inv	etere	to:	0000		and la	0 0				-				
ABN: 86 116 892 936	Project Name:	Macauco	Daverita		_		Da	te Sut	mitte	uu.	BUD	1/1/	ali		may		-					
P: (02) 9979 1722	Project Number:	1601080					TA	T				(T)	2	7		-						
F: (02) 9979 1222	roject Hamber.	-1001080		_			IA	l requ	ured:			5	19	<u> </u>	1	_						
			ANAL	YSIS	REC	UR	ED															
		Matrix				$ \top$						1	5	Ê				5		Τ		
		nt, filters er	MPOSITE	1 - C6 - C9	I - C10 - C36	NX	<u>s</u>	8	g	nois ils - M8	als - Lead	tls - Specify '	estos (ID onl)	estos (WA D(ign Materials	ducuvity (EU	ay Content	Exc Cap (CEC			E(S)	Eurofins MGT Suite Codes
Lab ID Sample ID	Date/	wat air oth	Comments 8	H	H D	BTE	PCB	D O	990	Phe	Meta	Meta	Asbe	Asbe	Fore		0 %	Cat		PIOH	SUIT	
<u></u>	313/9/16×																			X		B1 TRH/BTEXN
TPT2/0.2	2																		·		B7 B13	B1A TRHMAH B2 TRH/BTFXN/Pb
TP12/0.4	H															-	\uparrow			İΥ	1 2,012	B2A TRHMANPD
TP3/0.1								+	-				+			+	+				BI RI	B3 PAH/Phenois
TP13/0.3	s T T					\vdash									+	+	+		_	X	01/012	B4 TRH/BTEXN/PAH
TP14 D.Z	5 / 1/											-	+	-+	-	+-	+	+			D. I. Dut	B4A TRH/BTEXN/PAH/Phenois B5 TRH/BTEXN/M7
TPH4 BI						+ +-		++	-+	+	+	_				+-	+		_	6	07,01	86 TRH/BTEXN/M8
TPISTN2	ia latil					+ +-	-+	┼─┼	-+-		+						+		_		RA at	87 TRH/BTEXN/PAH/M8
TD5/D4						+-+					╂┈┽		+	-+-	-	+-	+			-	DEBI	B7A TRH/BTEXN/PAH/Phenols/M8
TDIL (0.7						$\left - \right $				X	┼──┼		_			+						
TPIL 10 2								+	_								_		_		B7, B13	B10 TRH/BTEXN/PAH/OCP/OPP/M8
110/01	+	├ ── ├ ── │					_													X		B11 Na/K/Ca/Mg/Cl/SO_/CO_/HCO_/NH_/NO
1917/0.2					_					_											BZBB	B11A B11/Alkelinity
TPM/0.5																				b		B11B B11/EC/TDS
TP8/0.2											Π										BFBB	812 IRH/81EXN/Oxygenates/Ethanol 812A TRH/8TEXN/Oxygenates
TPM/0.7	2													1			+-	-+	-		RA RIS	B13 OCP/PCB
DSI								<u> </u>	1	-	†			-		+-					87.00	B14 OCP/OPP
DS2							-		-		┝━┼										R1015	B15 OCP/OPP/PCB
RSI	12/9/16					+ +				V	+					+					PT 1513	B16 TDS/SO_/CH_/AIk/BOD/COD/HPC/CUB
057	14/6/1							X			╞━╌┼		+				+					B18 CI-/SO./6H
	111 1 10				_						+ +	_	+		_				_			B19 N/P/K
																						B20 CEC/%ESP/Ca/Ma/Na/K

Metals**(cir As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ⁶⁺, Cr ³⁺, Fe ²⁺, Fe ³⁺, Be, B, Al V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb

Chain of Custody

Signature:

Received by Red Date/Time: 4/9/16 Signature: 15

Aida M-Konsie Date/Time: Relinquished by:

Q3.2.1 QF_025 Eurofins MGT Chain of Eustody

Geo-Lo	ogix Pty Ltd							CHAIN	0	; C	US	то	DY				Pag	e.	1	0	of .	\sum								
Building Q2	2. Level 3	Project Mana	ger:	T	ed		Lilly							P	urcha	se Oi	rder i	No:	Ţ,	50		50	a							
2309/4 Day	/dream St	Contact emai	l:		41	6	a alo-	looix-cor		~				Q	uate F	Refer	ence	:	/	5	15	$\mathbf{B}^{\mathcal{O}}$	57			_				
Warriewoo	d, NSW 2102	CC email:		ar	nc	D	nzi P Q a	00-loci	K -1	ہ د	-0	~		S	end in	voic	e to:		acco	unis/	Maeo-									
ABN: 86 116 8	92 936	Project Name	:	r	14(1)	mi.	· Vaive	rity						D	ate Si	rbmi	Hed:		14	+ /0	9/1	[_				
P· (02) 9979	1722	Project Num	ver:	10			86	0						т	ΑT		at.				1					_				
F: 02 9979	1222						0.0			(0)				1.	et tet	laus	0.			- Jan	111					-				
			1	24	-			AN	AL	SIS	S KI	=Qt	JIRE	20		-	1			- 1		-			-2	_				
							4													:	10	E	-	5		S				
	/					n D			Ħ	ទ	ŝ								bad	pecify	9	MA	fer	ity (E		D (C				Eurofins MGT Suite
									Posi	S.	5		z				ele -	N - 8	2.	8		a tos	gn W	uctiv	(^t o	S U			E(S)	Codes
Lab ID	Sample ID	Pate	soil	wate	air	pdu othe	Comn	nents	S	ΤPΗ	H	Š.		PAH		OPP3	Phen	Meta	Meta	Metal	TCLP Ache	Asbe	Fores	Cond	D) Hd			PIC	SUIT	
	1P1/0.1	13/4/16	X												>			X	X											BI TRHBTEIN
	TP1/0_2		\square																									X		B2 TRHBTEXNPD
	TP2/0.																												B7. EI	вга таниманирь
	TP2/0-3																											b		83 PAH/Phenok
	TPS/0.0														X			X	2									T		BIA TRIVETEXNIPAHIPhenok
	TP3/0.	3																										X		85 TRH/BTEXNM7
	TP4/00:		Ц												X			\times	×.									T		36 TRH/BTEXNAMS
	TP4/0.3			ľ												Ι												X		BTA TRHBTEXN/PAH/Phenole/MG
	1P5/0.2	2																											BZDI	88 TRHVOC/PAHMA
	$1^{PS/0.4}$		Ш																									X		
	TPG/0.1																												87.013	811 HafiCaMg/Ci/EO/CO/HCO/MH/ND
	TP6/0.7																											X		011A B11/Akulinity
	TP/D.1																												137 B13	0118 011/EC/TO1
	TPILOS	5																										X		B12A TRH/BTEXN/Oxygenator
	TP8/0.15																					Τ							B7, 1913	ET3 OCP/PCB
2	TP9/0.1														Ż				Ł										B7, B13	B14 OCP/OPP
	TP9/0.3														X			X										È		B16 TDESO_CH_ANDODICOOMPC/CUB
	TPI0/0.2	-						_						Τ	Τ														B7.013	B17 SOUNO,#e++HPC/CUB
	TPIO/0.4														Τ							1						X		B16 CI-/SQ./pH
	TPILO.		\checkmark																						1			-	BZAR	BIG NPA
Metals**(cir	As, Cd, Cr, Cu, Ni, F	2b, Zn, Hg, Cr ⁶⁺ , (Cr ³⁴ F	Fe 7', F	e ³⁴ . B	a, B, A	I. V. Mn. Fe. Co. S	Se. Sr. Sn. Mo. J	4o. Ba	. TI. 6	31. So									-		-								
				1.11					Cł	ain	of	Cus	stor	lv	1			and the second							100	13				and it is not set of the local division of the
	. 1	44 - 17					11	/									21	2							-		1 1.			
Relinquish	ed by: Aida	Make	inz.	<u>ت</u>)ale/Tir	ne:_[04/9/16 sig	nature: A	M	12	2	1		-	Receiv	/ed by		14	S.G.	~	0			_ Də	avî Tîrtih	18	19/1	bsigi	adure	25 71
13.2.1 QF_025 Eurol	uns MGT Chain of Custody	A	ne	nd	led	G	oc Rec	d 1509	016	16	0	30	12	Z.																Cit - Salary

13.2.1 OF	025 Eurofuns MG1 Charle of Custody	

Geo-Logix Pty Lto	1			CHAIN	OF	C I	บรา		YC				Page		2	of	7									
Building Q2, Level 3	Project Manager	: Tei	JL	:lb						Pur	chas	e Or	der No	 D:		$< \overline{a}$	0									
2309/4 Daydream St	Contact email:	+1:1	In a	apo-Laix con	an					Ou	ole R	efere	nce:	_	÷		1									
Warriewood, NSW 2102	CC email:	A~1	Ken	2:0000-10010	- 10	٦.6	~			Ser	nd Im	voice	to:			സ്ററ്റെ	loop	Loom	8:1							
ABN: 86 118 282 836	Project Name:	Ma	anen	e University						Dat	e Su	bmitt	ed:	<u></u>	14	191	R	1								
P: (02) 9979 1722	Project Number:	160	10	R6 0						TAT	req	uired	:		5'	70	1									
F: (02) 9979 1222	Contraction of the local division of the loc	COLON!	-		AL Y	1010	RE	OUI	RE	D		-					-						_			
	1	Matri	(-				T	1 1		1	-	7				1 1	- 1		
Lab ID Sample ID	Date	water	paint, filters other	Comments	COMPOSITE	TPH - C6 - C9	TPH - C10 - C36	VOC8 RTEYN	DIEAN	PCB4	OCPs	OPPs	Phenols	Metals • MB	Metais - Specify **	TCLP		Foreign Materials	Conductivity (EC)	pH (CaCl ₃)	% Clay Content	Cat Exc Cap (CEC)		PloH -	SUITE(S)	Eurofins MGT Suite Codes
1P1/0-	S15/9/16/X	<u>`</u>			_			_	+	4				\downarrow			-		1					Д		TRHMAN
172/0.2		+ + +						_	-										1					÷	B7 , B13	2 TRHATEXNPL
TP12/0.4	t													\perp										X		B24 TRHMAHPb
TP15/0.			_																						137, B/3	TRHBTEXN/PAH
TP13/0.	3																							X		BAA TRIVETEXNPAIUPhonoir
TP14 0.2	5							-						Τ											B7-BIS	IS TRHATEXNAA7
TPH BY	¥																-	-	+				+ +	x.		BA TRH/BTEXNAR
TPISTIZ	14-19/16							+	+	+				+			+	+	+			+	+ +	-	BIRIT	
105/04		+ + +	_					t	+	+	$\overline{\mathbf{v}}$		-+-	$\overline{\mathbf{v}}$			+		+			+	+ +		2480	BE TRHWOC/PANIM
TDILLO							+	+	+-	+	~		-+'	<u> </u>			-	+-	+				+		21 117	BE TRHIBIEXNA ANOCPAR
	╶┼──╶╋┥	┽╴┼╴┽				-+	-	+		+			+	-	+			+-	-				+ +		24,912	BIO TRHISTEXN/PAUVOCP/OPPIME
1110/(2)	+	+-+-+						+					-+	+			_							격		B11 NativCEAMO/CVSOJ/COgHCOgHHyte
1977,0.2		+											_	_				_							DF1817	B11A B11/AB + knoy
TPIT/05								_																h		\$12 TRH/81EXN/Ocrosmuer/site not
TP8/0.2																									B7-613	B124 TRH/BTEXN/On peneles
TPM10.	4																								R7 BIS	813 OCP/*C6
051								1							-		+	-	1				┽╾┽		RERIZ	814 OCPJOPP
DK7		,† - † - †			\square		+	+	+								+					-		-	22017	B15 OCP/OPP/PCE
DC I	12 10/11	5/-1		· · · · · · · · · · · · · · · · · · ·									-+	7	+-+				+				┿╶┼	-	<u> </u>	B16 TOBISO, CH, ARABODICODA PC/CUB
000	15/1/6							-+-	+		X	$ \rightarrow $	-	-			-		+			_	+	_		512 CI-/SO./pH
K97	14/1/16	+	_			\rightarrow	_				X			K?					-				+ +			61\$ NPA;
																			1							820 CECNES#Convention

Metals" (ch As, Co, Cr, Cu, Ni, Pb, Zn, Hg, Cr 8", Cr 3", Fe 3", Fe 3", Bc, B, Al, V, Mn, Fc, Co, Se, Sr, Sn, Mo, Ag, Ba, Ti, 6, Sh

Chain of Custody An Received by Rean Caringtime 12/9/16 Signature. Mi Kourse DaterTime: Hidan Relinquished by: Signature; 25.2.1 OF 025 Eurofins MGT Chain of Custods LZD: Mirch 2002

Ellen Wandala Gamage

Subject:

FW: Revised COC for Report 515897

-----Original Message-----From: Ted Lilly [mailto:tlilly@geo-logix.com.au] Sent: Thursday, 15 September 2016 4:13 PM To: Nibha Vaidya Subject: RE: Revised COC for Report 515897

Nibha,

Also, please analyse samples TP3/0.05 and TP17/0.2 for pH(CaCl2), % Clay Content, and Cation Exchange Capacity (CEC).

Cheers,

Ted Lilly | Senior Geotechnical Engineer Unit 2309/4 Daydream St, Warriewood NSW 2102 T: 02 9979 1722 | M: 0412 708 868 | W: <u>www.geo-logix.com.au</u>

This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended recipient please delete this email immediately. Use, disclosure or reproduction of this email by anyone other than the intended recipient(s) is strictly prohibited. No representation is made that this email or any attachments are free of viruses and the recipient is responsible for undertaking appropriate virus scanning. Any advice provided in or attached to this email is subjected to limitations.

Original Message----From: Ted Lilly Sent: Thursday, 15 September 2016 4:03 PM To: 'NibhaVaidya@eurofins.com' <<u>NibhaVaidya@eurofins.com</u>> Subject: Revised COC for Report 515897

Nibha,

Please find attached revised lab assignments for report 515897.

Cheers,

1094515897

Ted Lilly | Senior Geotechnical Engineer Unit 2309/4 Daydream St, Warriewood NSW 2102 T: 02 9979 1722 | M: 0412 708 868 | W: <u>www.geo-logix.com.au</u>

This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended recipient please delete this email immediately. Use, disclosure or reproduction of this email by anyone other than the intended recipient(s) is strictly prohibited. No representation is made that this email or any attachments are free of viruses and the recipient is responsible for undertaking appropriate virus scanning. Any advice provided in or attached to this email is subjected to limitations.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Geo-Logix P/L Bld Q2 Level 3, 23 Warriewood NSW 2102	09/4 Daydream St
Attention: Report Project Name Project ID Received Date Date Reported	Ted Lilly 515899-AID MACQUARIE UNIVERSITY 1601086 Sep 14, 2016 Sep 20, 2016
Methodology:	
Asbestos ID	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. Bulk samples include building materials, soils and ores.
Subsampling Soil Samples	The whole sample submitted is first dried and then sieved through a 10mm sieve followed by a 2mm sieve. All fibrous matter viz greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) Iron ores - Sampling and Sample preparation procedures is employed. Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated and where required interfering organic fibres or matter may be removed by treating the sample for several hours at a temperature not exceeding $400 \pm 30^{\circ}$ C. The resultant material is then ground and examined in accordance with AS 4964-2004.
Limit of Reporting	The nominal detection limit of the AS4964 method is around 0.01%. The examination of large sample sizes (at least 500 ml is recommended) may improve the likelihood of identifying asbestos material in the greater than 2 mm fraction. The NEPM screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres. NOTE: NATA News, September 2011 – page 34, states, "Weighing of fibres is problematic and can lead to loss of fibres and potential exposure for laboratory analysts. To request laboratories to report information which is outside the scope of AS 4964-2004 and the scope of their accreditation is misleading and is most unwise" therefore such values reported are outside the scope of Eurofins mgt NATA accreditation as designated by an asterisk.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name	MACQUARIE UNIVERSITY
Project ID	1601086
Date Sampled	Sep 13, 2016
Report	515899-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
TP7/0.1-0.3	16-Se14708	Sep 13, 2016	Approximate Sample 770g Sample consisted of: Brown coarse grain soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. ^{M11}
TP9/0.1-0.3	16-Se14709	Sep 13, 2016	Approximate Sample 1077g Sample consisted of: Brown coarse grain soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. ^{M11}
TP16/0.1-0.3	16-Se14710	Sep 13, 2016	Approximate Sample 1042g Sample consisted of: Brown coarse grain soil and rocks.	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected. ^{M11}

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneySep 20, 2016Indefinite

Melbourne Laboratory - NATA Site # 1254 & 14271

Sample Date

Sep 13, 2016

Sep 13, 2016

Sep 13, 2016

Sydney Laboratory - NATA Site # 18217

Brisbane Laboratory - NATA Site # 20794

mgt

Sampling Time

Matrix

Soil

Soil

Soil

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www eurofins com au

Х

Х

Х

Х

3

LAB ID

S16-Se14708

S16-Se14709

S16-Se14710

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102			Order No.: Report #: Phone: Fax:	PO1510 515899 02 9979 1722 02 9979 1222	Received: Due: Priority: Contact Name:	Sep 14, 2016 5:20 PM Sep 21, 2016 5 Day Ted Lilly
Project Name: Project ID:	MACQUARIE UNIVERSITY 1601086				Eurofins mgt Analytical S	Services Manager : Nibha Vaidya
	Sample Detail	Asbestos - WA guidelines				

External Laboratory

Sample ID

TP7/0.1-0.3

TP9/0.1-0.3

TP16/0.1-0.3

Test Counts

No

2

3

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Units

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

% w/w: weight for weight b	pasis	grams per kilogram
Filter loading:		fibres/100 graticule areas
Reported Concentration:		fibres/mL
Flowrate:		L/min
Terms		
Dry	Where a moisture has been determined on a solid sample the resu	It is expressed on a dry basis.
LOR	Limit of Reporting.	
COC	Chain of custody	
SRA	Sample Receipt Advice	
ISO	International Stardards Organisation	
AS	Australian Standards	
WA DOH	Western Australia Department of Health	
NOHSC	National Occupational Health and Safety Commission	
ACM	Bonded asbestos-containing material means any material containing although possibly broken or fragmented, and where the asbestos is to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on a ceiling plaster, ceiling tiles, and gasket materials. This term is restri approximates the thickness of common asbestos cement sheeting for fibre release.	In g more than 1% asbestos and comprises asbestos-containing-material which is in sound condition, a bound in a matrix such as cement or resin. Common examples of ACM include but are not limited acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and cted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it and for fragments to be smaller than this would imply a high degree of damage and hence potential
FA	FA comprises friable asbestos material and includes severely weat is defined here as asbestos material that is in a degraded condition was previously bonded and is now significantly degraded (crumblin	hered cement sheet, insulation products and woven asbestos material. This type of friable asbestos such that it can be broken or crumbled by hand pressure. This material is typically unbonded or g).
PACM	Presumed Asbestos-Containing Material means thermal system ins than 1980 that are assumed to contain greater than one percent as	sulation and surfacing material found in buildings, vessels, and vessel sections constructed no later bestos but have not been sampled or analyzed to verify or negate the presence of asbestos.
AF	Asbestos fines (AF) are defined as free fibres, or fibre bundles, sm small fibres (< 5 microns in length) are not considered to be such a (Note that for bonded ACM fragments to pass through a 7 mm x 7	aller than 7mm. It is the free fibres which present the greatest risk to human health, although very risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. mm sieve implies a substatntial degree of damage which increases the potential for fibre release.)
AC	Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	N/A
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N/A	Not applicable
M11	NATA accreditation does not cover the performance of this service.

Authorised by:

Rhys Thomas

Senior Analyst-Asbestos (NSW)

Glenn Jackson National Operations Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ABN - 50 005 085 521

mgt

e mail : EnviroSales@eurofins com web : www.eurofins.com.au

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Ge o-L ogix P/L
Contact name:	Ted Lilly
Project name:	MACQUARIE UNIVERSITY
Project ID:	1601086
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Sep 14, 2016 5:20 PM
Eurofins mgt reference:	51 589 9

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 3 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- \checkmark Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Ted Lilly - tlilly@geo-logix.com.au.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

Geo-Logix Pty Lto	d l					CHAI	N O	FC	:បទ	STO	DD	(I	Page	ł]	of		(
Building Q2, Level 3	Project Mana	ger:	1	2d		Liller							Pure	haed	0.0	lor N	-		5	214	<u> </u>)								
2309/4 Daydream St	Contact emai		11	· 11	6	applant in	Gar								. 010	agi N	-				20		0								
Warriewood, NSW 2102	contact emai	····		. [N	7		.~~~~						Quot	e Re	fere	nce:	3	-	1.000	215			5	_	-						
tranionoda, norti zioz	CC email:	_	am	<u>v</u> ck	Sen :	the lay geo - logix	60	a~					Send	l Inv	oice	to:	- 2	Becour	nis@	080-10	gix o	om.a	М								
ABN: 86 116 892 936	Project Name	" <u> </u>	Ma	2 cq1	WF1	e University							Date	Sub	mitt	ed:		14	10	11	6	_			-						
P: (02) 9979 1722	Project Numb	ber:	<u> </u>	20	١C)86 Č							TAT	requ	ired	:		_	4	40	1										
F: (02) 9979 1222		-				Δ		Vei	еп	EO		ED					1				3						_				
#		T	Mat	elu.	-	A	NAL	131	3 1				-	-	_	_	-			_						_		_			
			IVIAL		T	-			[1		5	Ð	10				.					
				2				6	C36								1	e Site		0	A D	erial	Ĕ		ent	B)					Eurofine MCT Suite
				filte			TIS	9-9	9						1		¥	- Lea	5) =	os (V	Mat	tivit	F	Cont	Cap					Codes
			ler	int,	her		MPC	1 H	E E	g	EXN	Hs	88	S.	å	Brol	tals	tals	_ _	besto	oesto	ngia	Jduc	(CaC	Slay .	EX		1	TE(S		0.0000
Lab ID Sample ID	Date	^o	<u>si X</u>		<u>t</u>	Comments	<u>18</u>	₽	1	2		PA	2	8	<u>8</u>	ā	ž	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	2 2	Asl	Ast	For	õ	표	%	5 U		I I I I I I I I I I I I I I I I I I I	SUI		
151	14 M/L		_		<u> </u>	Please send	-K-					_																	BFB		TRH/BTEXN
154		N	_			to Mebaur	2																						BI-RI	2 B2	TRH/BTEXN/Pb
							$\boldsymbol{\nu}$													-					-	-†			124,00	B2A	TRH/MAH/Pb
TP7/0,1-0.	3 13/9	X			1	Bas	1		-					+	-	-+	-+		+	+	X					-+	-	+		B3	PAH/Phenols
TDala1-0	2 13/9	X	+-		+	Raha		+		-	\vdash			-+	+	-	+		+	+-	5			-+	\rightarrow	+				B4	TRH/BTEXN/PAH
TRULALD	11/10					Bang	╉──	\vdash	-		$\left \right $	-				-+	+		+	+	10					\rightarrow	_		-	B4A	TRH/BTEXN/PAH/Phenols
<u> </u>	\$ 14/1		_	-	–	Dary	_			<u> </u>			_		-			_			Ø									B5	TRH/BTEXN/M7
				+	<u> </u>		┺	<u> </u>					_																	86	
																														B7A	TRH/BTEXN/PAH/Phenols/M8
																				1						-†				Вð	TRH/VOC/PAH/M8
							1							-		-		1-	+	1-1				-	\neg	-	-		+	вя	TRH/BTEXN/PAH/OCP/M8
			+		1-	·	-	f				+	-+-	+	-+-	-+			+	+				-+	-	+	+	+	+	810	TRH/BTEXN/PAH/OCP/OPP/M8
							╋		-			-+			_	+	-									\rightarrow				- 811	Na/K/Ca/Mg/Cl/SO4/CO3/HCO3/NH3/NO3
			-								\vdash			_			+		+					_		\perp				B11/	A B11/Alkulinity
			_	-			-					_		_																8118	TPH/BTEYN/Organitae Ethanol
																									T		T			012	TRH/BTEXN/Oxvoenates
																													1	813	OCP/PCB
							1					-	+		+	-+			1				-+	-+	-+	-+	-	+	-	- B14	OCP/OPP
	-		-				+	1				+		+		-			+	+			\rightarrow	-				-		B15	OCP/OPP/PCB
				+			+					-	_	_		_	-		+	+-+		_		-+		_	+			B16	TDS/SO_/CH_/Alk/BOD/COD/HPC/CUB
			_	-								_																		817	SO,/NO,/Fe++/HPC/CUB
																														B18	CI-/\$Q₄/pH
												T			T													1		B19	N/P/K
Metals**/cir.As.Cd.Cr.Cu.Ni.E	2h Zn Hn Cr ^{6*} C	r ³⁺ Eo 2	2+ Ee 3	* Ro	R AI	V Mo Ee Co So Sr So Mo	Ac P	. TI					L.			- 40			-	4	-		-					-		1620	URUMESP/Gamanak

Chain of Custody

Relinquished by: <u>Aidan McKenzik</u> Date/Time: <u>[4/6/16</u> Signature <u>Ampson</u> 03 2.1 OF_025 Eurolins MGT Chain of Custody KL Col Elkn MG Ettingf. 1410916 1720 //2

Received by Petro

DaterTime: 10 09 6 Signature 15

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Ted Lilly

Report
Project name
Project ID
Received Date

515980-S-V2 MACQUARIE UNIVERSITY 1601086 Sep 16, 2016

Client Sample ID			Te1	тер
Samle Matrix			Soil	Soil
Eurorins mgt Sample No.			M16-Se15161	M16-Se15162
Date Sampled			Sep 14, 2016	Sep 14, 2016
Test/Reference	LOR	Unit		
		1		
TRH C6-C9	20	mg/kg	< 20	< 20
% Moisture	1	%	17	21
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	70	71
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions			
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5

Client Sample ID			TS1	TS2
Sample Matrix			Soil	Soil
Eurofins I mot Sample No.			M16-Se15161	M16-Se15162
Date Sampled			Sen 14 2016	Sen 14 2016
Test/Deference		1.1	Sep 14, 2010	Sep 14, 2010
Test/Reference	LOR	Unit		
	0.5		0.5	0.5
	0.5	mg/kg	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5
Depenthrope	0.5	mg/kg	< 0.5	< 0.5
Prienantmene	0.5	mg/kg	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5
2 Eluorohinhonyl (surr.)	0.5	0/.	112	124
p-Terphenyl-d14 (surr.)	1	/0 0/	107	124
Organochlorine Pesticides		70	107	117
Chlordanos Total	0.1	ma/ka	< 0.1	- 0.1
	0.1	mg/kg	< 0.05	< 0.0
4.4 - DDE	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	0.20	0.13
4.4-001 2-BHC	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.00	ma/ka	< 0.05	< 0.05
Endrin	0.00	ma/ka	< 0.05	< 0.05
Endrin aldehyde	0.05	ma/ka	< 0.05	< 0.05
Endrin ketone	0.05	ma/ka	< 0.05	< 0.05
g-BHC (Lindane)	0.05	ma/ka	< 0.05	< 0.05
Heptachlor	0.05	ma/ka	< 0.05	< 0.05
Heptachlor epoxide	0.05	ma/ka	< 0.05	< 0.05
Hexachlorobenzene	0.05	ma/ka	< 0.05	< 0.05
Methoxychlor	0.05	ma/ka	< 0.05	< 0.05
Toxaphene	1	ma/ka	<1	< 1
Dibutylchlorendate (surr.)	1	%	93	88
Tetrachloro-m-xylene (surr.)	1	%	126	80
Polychlorinated Biphenyls				
Aroclor-1016	0.1	ma/ka	< 0.1	< 0.1
Aroclor-1221	0.1	ma/ka	< 0.1	< 0.1
Aroclor-1232	0.1	ma/ka	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1
Aroclor-1260	0.1	mg/ka	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	93	88
Tetrachloro-m-xylene (surr.)	1	%	126	80
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
TRH >C10-C16	50	ma/ka	< 50	< 50
TRH >C16-C34	100	ma/ka	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100

Client Sample ID Sample Matrix Eurofins mgt Sample No.			TS1 Soil M16-Se15161	TS2 Soil M16-Se15162
Date Sampled			Sep 14, 2016	Sep 14, 2016
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	2	mg/kg	4.5	8.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	33	39
Copper	5	mg/kg	8.3	14
Lead	5	mg/kg	26	34
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5
Zinc	5	mg/kg	33	52

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B7			
TRH C6-C9	Melbourne	Sep 16, 2016	14 Day
- Method: MGT 100A			
BTEX	Melbourne	Sep 16, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 16, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Sep 16, 2016	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 16, 2016	14 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 16, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M8	Melbourne	Sep 16, 2016	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
% Moisture	Melbourne	Sep 16, 2016	14 Day
Method: LTM-GEN-7080 Moisture			
Eurofins mgt Suite B13			
Organochlorine Pesticides	Melbourne	Sep 16, 2016	14 Day
- Method: USEPA 8081 Organochlorine Pesticides			
Polychlorinated Biphenyls	Melbourne	Sep 16, 2016	28 Days
- Method: USEPA 8082 Polychlorinated Biphenyls			

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Cor Ade Pro Pro	Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 Project Name: MACQUARIE UNIVERSITY Project ID: 1601086			Ore Re Ph Fa:	der Ne port # one: x:	PO1510 Received: Sep 16, 2016 8:10 AM 515980 Due: Sep 23, 2016 02 9979 1722 Priority: 5 Day 02 9979 1222 Contact Name: Ted Lilly			
		Sa	mple Detail			Eurofins mgt Suite B13	Moisture Set	Eurofins mgt Suite B7	
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	
Sydn	ey Laboratory	- NATA Site # 1	8217						
Brisk	bane Laborator	/ - NATA Site #	20794						
No	Sample ID	Sample Date	Sampling	Matrix	LAB ID				
	Campio ib	Campio Dato	Time	matrix	2.2.2				
1	TS1	Sep 14, 2016		Soil	M16-Se15161	Х	Х	Х	
2	TS2	Sep 14, 2016		Soil	M16-Se15162	Х	Х	Х	
Test	Counts					2	2	2	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
coc	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	T	-	1	I		
TRH C6-C9	mg/kg	< 20		20	Pass	
Method Blank		-	1	I		
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank		-	1	I		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank		-		-		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank		-		-		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Organochlorine Pesticides	-					
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank						
Polychlorinated Biphenyls						
Aroclor-1016	mg/kg	< 0.1		0.1	Pass	
Aroclor-1221	mg/kg	< 0.1		0.1	Pass	
Aroclor-1232	mg/kg	< 0.1		0.1	Pass	
Aroclor-1242	mg/kg	< 0.1		0.1	Pass	
Aroclor-1248	mg/kg	< 0.1		0.1	Pass	
Aroclor-1254	mg/kg	< 0.1		0.1	Pass	
Aroclor-1260	mg/kg	< 0.1		0.1	Pass	
Total PCB*	mg/kg	< 0.1		0.1	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
TRH >C10-C16	ma/ka	< 50		50	Pass	
TRH >C16-C34	ma/ka	< 100		100	Pass	
TRH >C34-C40	ma/ka	< 100		100	Pass	
Method Blank			I I			
Heavy Metals						
Arsenic	ma/ka	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	ma/ka	< 5		5	Pass	
Copper	ma/ka	< 5		5	Pass	
Lead	ma/ka	< 5		5	Pass	
Mercury	ma/ka	< 0.1		0.1	Pass	
Nickel	ma/ka	< 5		5	Pass	
Zinc	ma/ka	< 5		5	Pass	
LCS - % Recovery						
TRH C6-C9	%	126		70-130	Pass	
LCS - % Recovery						
BTEX						
Benzene	%	116		70-130	Pass	
Toluene	%	113		70-130	Pass	
Ethylbenzene	%	111		70-130	Pass	
m&p-Xylenes	%	107		70-130	Pass	
Xylenes - Total	%	108		70-130	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	127		70-130	Pass	
TRH C6-C10	%	117		70-130	Pass	
LCS - % Recovery			· · ·			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C10-C14	%	97		70-130	Pass	
LCS - % Recovery			· · · · · ·			
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	97		70-130	Pass	
Acenaphthylene	%	108		70-130	Pass	
Anthracene	%	119		70-130	Pass	
	/0		I I			

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benz(a)anthracene	%	112	70-130	Pass	
Benzo(a)pyrene	%	96	70-130	Pass	
Benzo(b&j)fluoranthene	%	91	70-130	Pass	
Benzo(g.h.i)perylene	%	101	70-130	Pass	
Benzo(k)fluoranthene	%	114	70-130	Pass	
Chrysene	%	95	70-130	Pass	
Dibenz(a.h)anthracene	%	121	70-130	Pass	
Fluoranthene	%	93	70-130	Pass	
Fluorene	%	108	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	112	70-130	Pass	
Naphthalene	%	98	70-130	Pass	
Phenanthrene	%	112	70-130	Pass	
Pyrene	%	87	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
4.4'-DDD	%	118	70-130	Pass	
4.4'-DDE	%	106	70-130	Pass	
4.4'-DDT	%	117	70-130	Pass	
a-BHC	%	111	70-130	Pass	
Aldrin	%	113	70-130	Pass	
b-BHC	%	111	70-130	Pass	
d-BHC	%	128	70-130	Pass	
Dieldrin	%	106	70-130	Pass	
Endosulfan I	%	97	70-130	Pass	
Endosulfan II	%	109	70-130	Pass	
Endosulfan sulphate	%	113	70-130	Pass	
Endrin	%	93	70-130	Pass	
Endrin aldehvde	%	90	70-130	Pass	
Endrin ketone	%	107	70-130	Pass	
g-BHC (Lindane)	%	115	70-130	Pass	
Heptachlor	%	94	70-130	Pass	
Heptachlor epoxide	%	104	70-130	Pass	
Hexachlorobenzene	%	99	70-130	Pass	
Methoxychlor	%	122	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls					
Aroclor-1260	%	93	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	%	98	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	108	80-120	Pass	
Cadmium	%	96	80-120	Pass	
Chromium	%	101	80-120	Pass	
Copper	%	103	80-120	Pass	
Lead	%	101	80-120	Pass	
Mercury	%	112	75-125	Pass	
Nickel	%	101	80-120	Pass	
Zinc	%	102	80-120	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				-		-			
				Result 1					
TRH C6-C9	M16-Se15782	NCP	%	89			70-130	Pass	
Spike - % Recovery				1	1	T	1	-	
BTEX				Result 1					
Benzene	M16-Se15782	NCP	%	97			70-130	Pass	
Toluene	M16-Se15782	NCP	%	90			70-130	Pass	
Ethylbenzene	M16-Se15782	NCP	%	90			70-130	Pass	
m&p-Xylenes	M16-Se15782	NCP	%	88			70-130	Pass	
o-Xylene	M16-Se15782	NCP	%	90			70-130	Pass	
Xylenes - Total	M16-Se15782	NCP	%	88			70-130	Pass	
Spike - % Recovery				1	1				
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	M16-Se15782	NCP	%	119			70-130	Pass	
TRH C6-C10	M16-Se15782	NCP	%	84			70-130	Pass	
Spike - % Recovery				1	1				
Polycyclic Aromatic Hydrocarbons	5			Result 1					
Acenaphthene	M16-Se13963	NCP	%	91			70-130	Pass	
Acenaphthylene	M16-Se13963	NCP	%	102			70-130	Pass	
Anthracene	M16-Se13963	NCP	%	110			70-130	Pass	
Benz(a)anthracene	M16-Se13963	NCP	%	109			70-130	Pass	
Benzo(a)pyrene	M16-Se13963	NCP	%	94			70-130	Pass	
Benzo(b&j)fluoranthene	M16-Se13963	NCP	%	93			70-130	Pass	
Benzo(g.h.i)perylene	M16-Se13963	NCP	%	95			70-130	Pass	
Benzo(k)fluoranthene	M16-Se13963	NCP	%	113			70-130	Pass	
Chrysene	M16-Se13963	NCP	%	92			70-130	Pass	
Dibenz(a.h)anthracene	M16-Se13963	NCP	%	116			70-130	Pass	
Fluoranthene	M16-Se13963	NCP	%	90			70-130	Pass	
Fluorene	M16-Se13963	NCP	%	102			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M16-Se13963	NCP	%	105			70-130	Pass	
Naphthalene	M16-Se13963	NCP	%	94			70-130	Pass	
Phenanthrene	M16-Se13963	NCP	%	96			70-130	Pass	
Pyrene	M16-Se13963	NCP	%	74			70-130	Pass	
Spike - % Recovery				1	-				
Organochlorine Pesticides		1 1		Result 1					
4.4'-DDD	M16-Se15391	NCP	%	127			70-130	Pass	
4.4'-DDE	M16-Se15391	NCP	%	84			70-130	Pass	
4.4'-DDT	M16-Se15391	NCP	%	102			70-130	Pass	
a-BHC	M16-Se15391	NCP	%	85			70-130	Pass	
b-BHC	M16-Se15391	NCP	%	82			70-130	Pass	
d-BHC	M16-Se15391	NCP	%	89			70-130	Pass	
Endosulfan I	M16-Se15391	NCP	%	103			70-130	Pass	
Endosulfan II	M16-Se15391	NCP	%	78			70-130	Pass	
Endosulfan sulphate	M16-Se15391	NCP	%	70			70-130	Pass	
Endrin	M16-Se15391	NCP	%	77			70-130	Pass	
Endrin aldehyde	M16-Se15391	NCP	%	84			70-130	Pass	
Endrin ketone	M16-Se15391	NCP	%	88			70-130	Pass	
g-BHC (Lindane)	M16-Se15391	NCP	%	82			70-130	Pass	
Heptachlor	M16-Se15391	NCP	%	71			70-130	Pass	
Heptachlor epoxide	M16-Se15391	NCP	%	77			70-130	Pass	
Hexachlorobenzene	M16-Se15391	NCP	%	74			70-130	Pass	
Methoxychlor	M16-Se15391	NCP	%	75			70-130	Pass	
Spike - % Recovery									
Polychlorinated Biphenyls				Result 1					

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1260	M16-Se16718	NCP	%	76			70-130	Pass	
Spike - % Recovery							•		
Heavy Metals				Result 1					
Arsenic	B16-Se15402	NCP	%	95			75-125	Pass	
Cadmium	B16-Se15402	NCP	%	86			75-125	Pass	
Chromium	B16-Se15402	NCP	%	87			75-125	Pass	
Copper	B16-Se15402	NCP	%	97			75-125	Pass	
Lead	B16-Se15402	NCP	%	84			75-125	Pass	
Mercury	M16-Se15122	NCP	%	88			70-130	Pass	
Nickel	B16-Se15402	NCP	%	85			75-125	Pass	
Zinc	B16-Se15402	NCP	%	91			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
TRH C6-C9	M16-Se15008	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
% Moisture	M16-Se15161	CP	%	17	17	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M16-Se15008	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M16-Se15008	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M16-Se15008	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M16-Se15008	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M16-Se15008	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M16-Se15008	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M16-Se15008	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M16-Se15008	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M16-Se14742	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				1					
Organochlorine Pesticides	I			Result 1	Result 2	RPD			
Chlordanes - Total	M16-Se17284	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	ļ
4.4'-DDD	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
b-BHC	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M16-Se17284	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M16-Se17284	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate								1	
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	M16-Se17284	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M16-Se17284	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M16-Se17284	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M16-Se17284	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M16-Se17284	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M16-Se17284	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	M16-Se17284	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	M16-Se17284	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M16-Se15120	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M16-Se15120	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M16-Se15120	NCP	mg/kg	56	57	<1	30%	Pass	
Copper	M16-Se15120	NCP	mg/kg	65	63	4.0	30%	Pass	
Lead	M16-Se15120	NCP	mg/kg	< 5	5.9	25	30%	Pass	
Mercury	M16-Se15120	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M16-Se15120	NCP	mg/kg	120	120	<1	30%	Pass	
Zinc	M16-Se15120	NCP	mg/kg	71	65	8.0	30%	Pass	

Comments

This report has been revised to amend Sample Information.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles N01 (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya	Analytical Services Manager
Alex Petridis	Senior Analyst-Metal (VIC)
Alex Petridis	Senior Analyst-Organic (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Huong Le	Senior Analyst-Inorganic (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

ABN - 50 005 085 521

mgt

e mail : EnviroSales@eurofins com web : www.eurofins.com.au

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Ge o-Logi x P/L
Contact name:	Ted Lilly
Project name:	MACQUARIE UNIVERSITY
Project ID:	1601086
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Sep 16, 2016 8:10 AM
Eurofins mgt reference:	51 598 0

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 14.2 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- \checkmark Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Ted Lilly - tlilly@geo-logix.com.au.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience
Geo-Logix Pty Ltc Building Q2, Level 3 2309/4 Daydream St Warriewood, NSW 2102 ABN: 86 116 892 936 P: (02) 9979 1722 E: (02) 9979 1722	Project Manager: Contact email: CC email: Project Name: Project Number:	Ted +1:146 amekar Macquer 16011	CHAIN Lilly 2 geo-logix .com vzie @ geo-logix co vzie @ geo-logix	l OF CUSTODY का रू- का	Page Purchase Order No Quote Reference: Send Invoice to: Date Submitted: TAT required:	accounts@geo-logix.com.au 14/9./16 5.40	
F: (02) 9979 1222		and the sould	AN	ALYSIS REQUIRE	D		
Lab ID Sample ID	Date	water air paint, filters	Comments	COMPOSITE TPH - C6 - C9 TPH - C10 - C36 VOCs BTEXN	PCBs PCBs OCPs OPPs Phenols Metals - M8	Metals - Lead Metals - Specify ** TCLP Asbestos (ID only) Asbestos (WA DOH) Foreign Materials Conductivity (EC) pH (CaCl ₂) pH (CaCl ₂) pH (CaCl ₂) Cat Exc Cap (CEC)	Eurofins MGT Suite (s) मेन हे मेन हे
T52 TP7/01-0	14 M/ 6X V X 3 13/9 X		Please send to Melbourne				BI TRH/BTEXN BIA TRH/MAH BZ TRH/BTEXN/Pb B2A TRH/MAH/Pb B3 PAH/Phonois
TP9/0,1-0. TP18/0,1-0.	3 13/1 × 3 14/9 X		Bag- Bag				B4 TRH/BTEXN/PAH B4A TRH/BTEXN/PAH/Phenols B5 TRH/BTEXN/M7 B6 TRH/BTEXN/M8
							B7 TRH/BTEXN/PAH/M8 B7A TRH/BTEXN/PAH/M8 B8 TRH/VOC/PAH/M8 B8 TRH/VOC/PAH/M8 B9 TRH/BTEXN/PAH/OCP/M8 B9 TRH/BTEXN/PAH/OCP/M8 B10 TRH/BTEXN/PAH/OCP/M8
							B11 Na/K/Ca/Mg/Cl/SO ₄ /CO ₃ /HCO ₃ /NH ₃ /NO ₃ B11 Na/K/Ca/Mg/Cl/SO ₄ /CO ₃ /HCO ₃ /NH ₃ /NO ₃ B11A B11/Alkalinity B11B B11/EC/TDS B12 TRH/PTEVM/Depresentes/Ethapol
							B12 TRUETENCOygenates/Enhand
							B16 TDS/SO ₄ /CH ₄ /AIk/BOD/COD/HPC/CUB B16 TDS/SO ₄ /CH ₄ /AIk/BOD/COD/HPC/CUB B17 SO ₄ /NO ₃ /Fe++/HPC/CUB B18 CI-/SO ₄ /PH B19 N/P/K
							B20 CEC/%ESP/Ca/Ma/Na/K

*(cir As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ^{s+}, Cr ³⁺, Fe ⁴⁺, Fe ³⁺, Be, B, Al, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Tl, Bi, Sb

Chain of Custody

Relinquished by: <u>Aidan McKenzik</u> Date/Time: <u>14/6/16</u> Signature: <u>Amfra</u> 03.2.1 OF_025 Eurofins MGT Chain of Custody KL Col Elkn MG Ellp-gf. 140916 1720 //g

Date/Time: 10/09/58ignature: 95 75900 16/09/2016 12th March 2009 les-Received by #515900

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Atten	tion:
/	

Ted Lilly

Report
Project name
Project ID
Received Date

517185-S ADDITIONAL: MACQUARIE UNIVERSITY 1601086 Sep 26, 2016

Client Sample ID			TP11/0.3
Sample Matrix			Soil
Eurofins mgt Sample No.			S16-Se23737
Date Sampled			Sep 13, 2016
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons	ŀ	ł	
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	0.6
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	0.6
2-Fluorobiphenyl (surr.)	1	%	118
p-Terphenyl-d14 (surr.)	1	%	134
% Moisture	1	%	22

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Sydney	Sep 26, 2016	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
% Moisture	Sydney	Sep 26, 2016	14 Day

- Method: LTM-GEN-7080 Moisture

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Cor Ade Pro	Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 Project Name: ADDITIONAL: MACQUARIE UNIVERSITY				Or Re Ph Fa	Order No.: Report #: Phone: Fax:	517185 02 9979 1722 02 9979 1222		Received: Due: Priority: Contact Name:	Sep 26, 2016 12:13 PM Sep 27, 2016 1 Day Ted Lilly		
		0001001								Eurofi	ns mgt Analytical Se	ervices Manager : Nibha Vaidya
Sample Detail				Polycyclic Aromatic Hydrocarbons	Moisture Set							
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71				_				
Sydney Laboratory - NATA Site # 18217				X	Х	-						
External Laboratory						-						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	TP11/0.3	Sep 13, 2016		Soil	S16-Se23737	Х	Х					
Test	Counts					1	1					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

Tormo

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
АРНА	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
coc	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				1				
Polycyclic Aromatic Hydrocarbons	5							
Acenaphthene			mg/kg	< 0.5		0.5	Pass	
Acenaphthylene			mg/kg	< 0.5		0.5	Pass	
Anthracene			mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene			mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene			mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene			mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene			mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene			mg/kg	< 0.5		0.5	Pass	
Chrysene			mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene			mg/kg	< 0.5		0.5	Pass	
Fluoranthene			mg/kg	< 0.5		0.5	Pass	
Fluorene			mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene			mg/kg	< 0.5		0.5	Pass	
Naphthalene			mg/kg	< 0.5		0.5	Pass	
Phenanthrene			mg/kg	< 0.5		0.5	Pass	
Pyrene			mg/kg	< 0.5		0.5	Pass	
LCS - % Recovery					· · ·			
Polycyclic Aromatic Hydrocarbons	5							
Acenaphthene			%	106		70-130	Pass	
Acenaphthylene			%	94		70-130	Pass	
Anthracene			%	109		70-130	Pass	
Benz(a)anthracene			%	94		70-130	Pass	
Benzo(a)pyrene			%	93		70-130	Pass	
Benzo(b&j)fluoranthene			%	76		70-130	Pass	
Benzo(g.h.i)perylene			%	97		70-130	Pass	
Benzo(k)fluoranthene			%	119		70-130	Pass	
Chrysene			%	116		70-130	Pass	
Dibenz(a.h)anthracene			%	80		70-130	Pass	
Fluoranthene			%	115		70-130	Pass	
Fluorene			%	98		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	83		70-130	Pass	
Naphthalene			%	111		70-130	Pass	
Phenanthrene			%	112		70-130	Pass	
Pyrene			%	113		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1				
Polycyclic Aromatic Hydrocarbons	5			Result 1				
Acenaphthene	S16-Se23737	CP	%	113		70-130	Pass	
Acenaphthylene	S16-Se23737	CP	%	98		70-130	Pass	
Anthracene	S16-Se23737	CP	%	112		70-130	Pass	
Benz(a)anthracene	S16-Se23737	CP	%	94		70-130	Pass	
Benzo(a)pyrene	S16-Se23737	CP	%	89		70-130	Pass	
Benzo(b&j)fluoranthene	S16-Se23737	CP	%	84		70-130	Pass	
Benzo(g.h.i)perylene	S16-Se23737	CP	%	95		70-130	Pass	
Benzo(k)fluoranthene	S16-Se23737	CP	%	117		70-130	Pass	
Chrysene	S16-Se23737	CP	%	110		70-130	Pass	
Dibenz(a.h)anthracene	S16-Se23737	CP	%	87		70-130	Pass	
Fluoranthene	S16-Se23737	CP	%	101		70-130	Pass	
Fluorene	S16-Se23737	CP	%	104		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Indeno(1.2.3-cd)pyrene	S16-Se23737	CP	%	86			70-130	Pass	
Naphthalene	S16-Se23737	CP	%	113			70-130	Pass	
Phenanthrene	S16-Se23737	CP	%	111			70-130	Pass	
Pyrene	S16-Se23737	CP	%	102			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S16-Se18995	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
	1			Result 1	Result 2	RPD			
% Moisture	S16-Se23737	CP	%	22	22	2.0	30%	Pass	

Quality Control Analyte Summary Compliance

The table below is the actual occurrence of QC performed on the batch of samples within this report and as defined below

Analysis	Samples Analysed	Laboratory Duplicates Reported	Laboratory Matrix Spikes Reported	Method Blanks Reported	Laboratory Control Samples Reported
Polycyclic Aromatic Hydrocarbons	1	1	1	1	1
% Moisture	1	1	NA	NA	NA

Quality Control Parameter Frequency Compliance follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure April 2011, Schedule B3, Guideline on Laboratory Analysis of Potentially Contaminated Soils and US EPA SW-846 Chapter 1: 'Quality Control'.

It comprises the following when a laboratory process batch is deemed to consist of up to 20 samples that are similar in terms of matrix and test procedure, and are processed as one unit for QC purposes. If more than 20 samples are being processed, they are considered as more than one batch.

Method blank

One method blank per process batch.

Laboratory duplicate

There should be at least one duplicate per process batch, or two duplicates if the process batch exceeds 10 samples.

Laboratory control sample (LCS)

There should be at least one LCS per process batch.

Matrix spikes

There should be one matrix spike per matrix type per process batch.

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Description

Code

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya Ivan Taylor Ryan Hamilton Ryan Hamilton Analytical Services Manager Senior Analyst-Metal (NSW) Senior Analyst-Inorganic (NSW) Senior Analyst-Organic (NSW)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

 * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | ing thail not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | ing the liable for consequential damages including, but not limited to, isgt precedent in dual not eleven to the reported execution of the reported execution of the report. In or case shall Eurofins, the tests there performed on the segars including, but not

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Ge o-Logix P/L
Contact name:	Ted Lilly
Project name:	ADDITIONAL: MACQUARIE UNIVERSITY
Project ID:	1601086
COC number:	Not provided
Turn around time:	1 Day
Date/Time received:	Sep 26, 2016 12:13 PM
Eurofins mgt reference:	51 718 5

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 3 degrees Celsius.
- All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \checkmark Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Additional from report 517185

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Ted Lilly - tlilly@geo-logix.com.au.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

Siamak 26.9.16

4517185

Siamak Sobhanei

From: Sent: To: Subject:

Nibha Vaidya Monday, 26 September 2016 12:13 PM **Esther Yew** FW: Eurofins | mgt Test Results, Invoice = Report 515897 : Site MACQUARIE UNIVERSITY (1601086)

Additional analysis on 1 day TAT please

Kind Regards,

Nibha Vaidya Phone: +61 2 9900 8415 Mobile : +61 499 900 805 Email : NibhaVaidya@eurofins.com

-----Original Message-----From: Ted Lilly [mailto:tlilly@geo-logix.com.au] Sent: Monday, 26 September 2016 12:02 PM To: Nibha Vaidva Cc: Ben Pearce; Aidan McKenzie Subject: RE: Eurofins | mgt Test Results, Invoice - Report 515897 : Site MACQUARIE UNIVERSITY (1601086)

Nibha,

Please run sample TP11/0.3 (Lab ID S16-Se14701) for PAHs, note that extraction needs to happen today/tomorrow to be within 14 day holding time.

Cheers,

Ted Lilly | Senior Geotechnical Engineer Unit 2309/4 Daydream St, Warriewood NSW 2102 T: 02 9979 1722 | M: 0412 708 868 | W: www.geo-logix.com.au

This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended recipient please delete this email immediately. Use, disclosure or reproduction of this email by anyone other than the intended recipient(s) is strictly prohibited. No representation is made that this email or any attachments are free of viruses and the recipient is responsible for undertaking appropriate virus scanning. Any advice provided in or attached to this email is subjected to limitations.

-----Original Message ----From: NibhaVaidya@eurofins.com [mailto:NibhaVaidya@eurofins.com] Sent: Thursday, 22 September 2016 6:51 PM To: Ted Lilly <<u>tlilly@geo-logix.com.au</u>> Cc: Ben Pearce

Spearce@geo-logix.com.au>; Aidan McKenzie <amckenzie@geo-logix.com.au> Subject: Eurofins | mgt Test Results, Invoice - Report 515897 : Site MACQUARIE UNIVERSITY (1601086)

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Atte	nti	on	:

Ted Lilly

Report Project name Project ID Received Date

517594-S MACQUARIE PARK 1601086 Sep 28, 2016

Client Sample ID			TP11/N/0.1	TP11/S/0.1	TP11/E/0.1	TP11/W/0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Se26335	S16-Se26336	S16-Se26337	S16-Se26338
Date Sampled			Sep 27, 2016	Sep 27, 2016	Sep 27, 2016	Sep 27, 2016
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	122	118	107	109
p-Terphenyl-d14 (surr.)	1	%	131	118	117	119
% Moisture	1	%	19	20	34	19

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 05, 2016	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
% Moisture	Sydney	Sep 28, 2016	14 Day

- Method: LTM-GEN-7080 Moisture

ABN - 50 005 085 521 e mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co Ad	mpany Name: dress:	Geo-Logix P/ Bld Q2 Level Warriewood NSW 2102	′L 3, 2309/4 Da	ydream St			Ore Re Ph Fa:	der No port #: one: x:	PO1531 517594 02 9979 1722 02 9979 1222	Received: Due: Priority: Contact Name:	Sep 28, 2016 12:10 PM Oct 6, 2016 5 Day Ted Lilly
Pro	oject ID:	1601086	PARK						Eur	ofins mgt Analytical S	ervices Manager : Nibha Vaidya
		Sa	mple Detail			HOLD	Polycyclic Aromatic Hydrocarbons	Moisture Set			
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	.71							
Sydi	hey Laboratory		8217 20704			X	X	X			
Exte	rnal Laboratory	y - NATA Sile #	20794								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	TP11/N/0.1	Sep 27, 2016		Soil	S16-Se26335		Х	Х			
2	TP11/S/0.1	Sep 27, 2016		Soil	S16-Se26336		Х	х			
3	TP11/E/0.1	Sep 27, 2016		Soil	S16-Se26337		Х	Х			
4	TP11/W/0.2	Sep 27, 2016		Soil	S16-Se26338		Х	X			
5	TP11/N/0.4	Sep 27, 2016		Soil	S16-Se26339	Х					
6	TP11/S/0.4	Sep 27, 2016		Soil	S16-Se26340	Х					
7	TP11/E/0.4	Sep 27, 2016		Soil	S16-Se26341	Х					
8	TP11/W/0.4	Sep 27, 2016		Soil	S16-Se26342	Х					
Test	Counts					4	4	4			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code		
Method Blank					1	I		
Polycyclic Aromatic Hydrocarbons	3							
Acenaphthene			mg/kg	< 0.5		0.5	Pass	
Acenaphthylene			mg/kg	< 0.5		0.5	Pass	
Anthracene			mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene			mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene			mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene			mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene			mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene			mg/kg	< 0.5		0.5	Pass	
Chrysene			mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene			mg/kg	< 0.5		0.5	Pass	
Fluoranthene			mg/kg	< 0.5		0.5	Pass	
Fluorene			mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene			mg/kg	< 0.5		0.5	Pass	
Naphthalene			mg/kg	< 0.5		0.5	Pass	
Phenanthrene			mg/kg	< 0.5		0.5	Pass	
Pyrene			mg/kg	< 0.5		0.5	Pass	
LCS - % Recovery								
Polycyclic Aromatic Hydrocarbons	6							
Acenaphthene			%	121		70-130	Pass	
Acenaphthylene			%	113		70-130	Pass	
Anthracene		%	118		70-130	Pass		
Benz(a)anthracene		%	111		70-130	Pass		
Benzo(a)pyrene		%	86		70-130	Pass		
Benzo(b&j)fluoranthene			%	85		70-130	Pass	
Benzo(g.h.i)perylene	%	100		70-130	Pass			
Benzo(k)fluoranthene			%	125		70-130	Pass	
Chrysene			%	125		70-130	Pass	
Dibenz(a.h)anthracene			%	93		70-130	Pass	
Fluoranthene			%	117		70-130	Pass	
Fluorene			%	121		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	98		70-130	Pass	
Naphthalene			%	121		70-130	Pass	
Phenanthrene			%	113		70-130	Pass	
Pyrene	1		%	114		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons	5			Result 1				
Acenaphthene	S16-Se26336	CP	%	91		70-130	Pass	
Acenaphthylene	S16-Se26336	CP	%	93		70-130	Pass	
Anthracene	S16-Se26336	CP	%	90		70-130	Pass	
Benz(a)anthracene	S16-Se26336	CP	%	89		70-130	Pass	
Benzo(a)pyrene	S16-Se26336	CP	%	91		70-130	Pass	
Benzo(b&j)fluoranthene	S16-Se26336	CP	%	82		70-130	Pass	
Benzo(g.h.i)perylene	S16-Se26336	CP	%	91		70-130	Pass	
Benzo(k)fluoranthene	S16-Se26336	CP	%	111		70-130	Pass	
Chrysene	S16-Se26336	CP	%	101		70-130	Pass	
Dibenz(a.h)anthracene	S16-Se26336	CP	%	77		70-130	Pass	
Fluoranthene	S16-Se26336	CP	%	93		70-130	Pass	
Fluorene	S16-Se26336	CP	%	95		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Indeno(1.2.3-cd)pyrene	S16-Se26336	CP	%	82			70-130	Pass		
Naphthalene	S16-Se26336	CP	%	93			70-130	Pass		
Phenanthrene	S16-Se26336	CP	%	91			70-130	Pass		
Pyrene	S16-Se26336	CP	%	84			70-130	Pass		
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Duplicate							•			
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD				
Acenaphthene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Acenaphthylene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Anthracene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Benz(a)anthracene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Benzo(a)pyrene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Benzo(b&j)fluoranthene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Benzo(g.h.i)perylene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Benzo(k)fluoranthene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Chrysene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Dibenz(a.h)anthracene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Fluoranthene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Fluorene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Indeno(1.2.3-cd)pyrene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Naphthalene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Phenanthrene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Pyrene	S16-Se26335	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Duplicate										
	1			Result 1	Result 2	RPD				
% Moisture	S16-Se25666	NCP	%	11	9.7	9.0	30%	Pass		

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Description

Code

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya Ivan Taylor Ryan Hamilton Ryan Hamilton Analytical Services Manager Senior Analyst-Metal (NSW) Senior Analyst-Inorganic (NSW) Senior Analyst-Organic (NSW)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

 * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofines (ing shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofines (ing the liable for cost, out of the performance of the reproduced except in full and release only to the insert stead. Unless indicated otherwise, the tests were indicated intervent of the reproduced except in full and release only to the insert stead.

ABN - 50 005 085 521

mgt

e mail : EnviroSales@eurofins com web : www.eurofins.com.au

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Ge o-Logix P/L
Contact name: Project name: Project ID: COC number: Turn around time: Date/Time received: Eurofins mgt reference:	Ted Lilly MACQUARIE PARK 1601086 Not provided 5 Day Sep 28, 2016 12:10 PM 51 759 4

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 2.2 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- \checkmark Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Ted Lilly - tlilly@geo-logix.com.au.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

38 Years of Environmental Analysis & Experience

Geo-L Building Q 2309/4 Da Warriewoo ABN: 88 118 P: (02) 997/ F: (02) 997/	ogix Pty Ltc 12, Level 3 hydream St od NSW 2102 892 936 9 1722 9 1222	Project Manager: Contact email: CC email: Project Name: Project Number:		<u>à</u>	<u>tlili</u> mcke	Ti v@ge nzie@ Macq 16	ed Lilly o-logix.com.au Ogeo-logix.com.au uarie Park 301086			F C	SR	STO	UIR	P C S C T	Purch Quote Send (Date S	ase (Ref Invoi Subm equir	Pa Orde erend ice to nitted red:	age er No: ce: o: d:	 	2COUT	1 of	1 	015 gix.c	om.a 016	ų						517594
Lab ID	Sample ID	Date	water	Vatr ie	puint, filters	other	Comme	onts	COMPOSITE	TPH - C6 C9	TPH - C10 - C36	VOCs	BTEXN	PAHs	PCBs Droe	00Ps	Orra	Metals - M8	Motale and	Metals - Ceau Metals - Specify **	TCLP	Asbestos (ID only)	Asbestos (WA DOH)	Foreign Materials	Conductivity (EC)	pH (CaCI ₃)	% Clay Content	Cat Exc Cap (CEC)	Hold	SUITE(S)	Eurofins MGT Suite Codes
	TP11/N/0_1 TP11/N/0.4 TP11/S/0.1	27/09/2016 × 27/09/2016 × 27/09/2016 ×							-					X															×		B1 TRH/BTEXN B1A TRH/MAH B2 TRH/BTEXN/Pb B2A TRH/MAH/Pb B3 PAH/Phenots
	TP11/E/0.1 TP11/E/0.4 TP11/W/0.2	27/09/2016 × 27/09/2016 × 27/09/2016 ×											7														_	-	~ X		B4 TRH/BTEXN/PAH B4A TRH/BTEXN/PAH/Phenois B5 TRH/BTEXN/M7 B6 TRH/BTEXN/M8
	TP11/W/0.4	27/09/2016 %																											×		B7 TR-MBTEXMPAHAMB B7A TR-MBTEXMPAHAPhenoleAMB B7A TR-MBTEXMPAHAPhenoleAMB B8 TR-MBTEXMPAHAPhenoleAMB B9 TR-MBTEXMPAHAPhenoleAMB B10 TR-MBTEXMPAHAPhenoleAMB B11 TR-MBTEXMPAHAPAHOCP/OPPAMB B11 NEMACEAMB/CUSO_/CO-/MCO-/MH-//MO-// B11A B11/Alkaliniky B11B B11/EC/TD8 B12 TR-MBTEXM/Oxygenetes
																											-				B13 OCP/PCB B14 OCP/OPP B15 OCP/OPP/PCB B16 TDS/80_/CH_/AIV80D/COD/HPC/CUB B17 SO_/NO_/Fe++/HPC/CUB B18 CH/SO_/pH B19 NP/K B20 CEC/MESP/CBM/LMMAK

Metals**(cir As, Cd, Cr, Cu, Ni, Pb, Zn, Hg, Cr ⁶⁺, Cr ³⁺, Fe ²⁺, Fe ³⁺, Be, B, Ai, V, Mn, Fe, Co, Se, Sr, Sn, Mo, Ag, Ba, Ti, Bi, Sb

Chain of Custody Ada MillericaterTime: 25/4/16 signature: A. 1945 209 Sean Received by: Relinquished by Date/Time: Signature 12:10 Q1.2.1 QF 02 Turofi s MGT Chain of Custody

GEO_LOGIX PTY LTD

ABN 86 116 892 936

Building Q2, Level 3 Suite 2309, 4 Daydream Street Warriewood NSW 2102

> Phone 02 9979 1722 Fax 02 9979 1222

Email info@geo-logix.com.au Web www.geo-logix.com.au